GEOTECHNICAL INVESTIGATION

ASPEN LAKES WEST SUBDIVISION PORTION OF SW 34-39-27-W4M BLACKFALDS, ALBERTA

PREPARED FOR

ASPEN LAKES WEST DEVELOPMENT INC.

C/O STANTEC CONSULTING LTD.

1100 – 4900 50TH STREET RED DEER, ALBERTA

PREPARED BY

PARKLAND GEOTECHNICAL CONSULTING LTD.

RED DEER, ALBERTA

PROJECT NO. RD5288 REV 1 JUNE 10, 2015

Geotechnical, Environmental and Materials Engineering Red Deer Sherwood Park · Grande Prairie · Calgary · Fort McMurray

Deace River - Medicine Hat - Lethbridge - Estevan

TABLE OF CONTENTS

1.0	INTRODUCTION4
1.1 1.2 1.3	SCOPE OF WORK4
2.0	SITE AND PROJECT DESCRIPTION
3.0	FIELD AND LABORATORY PROGRAMS
4.0	SUBSURFACE CONDITIONS6
4.1 4.2 4.3	
5.0	GROUNDWATER LEVELS7
6.0	DISCUSSION AND RECOMMENDATIONS
6.4 6.4 6 6 6.5 6.5 6.6 6.7 6.8 6.9	SERVICE TRENCH INSTALLATION115.3.1Service Trench Excavation115.3.2Pipe Bedding115.3.3Trench Backfill12BASEMENT FOUNDATIONS135.4.1Footings135.4.2Grade Supported Slabs145.4.3Basement Subdrainage System145.4.4Basement Excavations145.4.5Basement Backfill145.4.6Basement Backfill145.4.7Basement Backfill145.4.8Basement Backfill145.4.9Basement Backfill145.4.9Basement Backfill145.4.9Basement Backfill145.4.9Basement Backfill145.4.9Basement Backfill14CONCRETE15ROADWAY SUBGRADE CONSTRUCTION15FLEXIBLE PAVEMENT DESIGN16GRAVELLED LANES18INSPECTION1919
7.0	CLOSURE

TABLES

Table 1 - HISTORICAL GROUNDWATER MEASUREMENTS	7
Table 2 - GROUNDWATER MEASUREMENT FOR 2015 BOREHOLES	8
Table 3 - GRADATION SPECIFICATIONS - GRANULAR BEDDING MATERIAL	12
Table 4 - 150 MM COARSE GRADED GRAVEL	16
Table 5 - FLEXIBLE PAVEMENT DESIGN	16
Table 6 - ASPHALT CONCRETE	17
Table 7 - RECOMMENDED AGGREGATE SPECIFICATIONS	17

APPENDICES

Figures	Figure 1 - Key Plan Figure 2 - Site Plan Figure 3 - Aerial Plan Figure 4 – Groundwater Elevation Figure 5 – Sulphate Concentrations Figure 6 – Contour Plan
Appendix A	Borehole Logs Soil Test Results AT Specifications Explanation Sheets

Limitations Terms and Conditions

1.0 INTRODUCTION

1.1 GENERAL

Aspen Lakes West Development Inc. is proposing to complete the development the Aspen Lakes West Phase 1 residential subdivision in the Town of Blackfalds, Alberta. Parkland Geotechnical Consulting Ltd. (ParklandGEO) was commissioned to conduct a geotechnical assessment and percolation test for the site. The scope was outlined in the ParklandGEO proposal dated March 31, 2015 (File # PRO4113). Authorization to proceed with this assessment was given by Mr. Travis Fillier, P.Eng. of Stantec Consulting Ltd. The site location is shown on Figure 1.

1.2 SCOPE OF WORK

This assessment was based on a review of existing publically available site investigation information. This report summarizes results of historical field and laboratory testing programs for the site and presents geotechnical recommendations for the proposed development. Geotechnical recommendations are provided with respect to design and installation of underground services, residential foundations, roadway subgrades and flexible pavement design for light residential and collector roads.

1.3 PREVIOUS SITE INVESTIGATIONS

Two previous site investigations were performed at this site in 2002. These investigations were documented the following reports which were made available to the developer by the Town of Blackfalds:

- 1. "Geotechnical Investigation Proposed Rutten Subdivision SE 34-39-27-W4M, Blackfalds, Alberta", submitted to MPE Engineering Ltd. by Parkland Geotechnical Consulting Ltd., December 2002 (File # RD0814).
- "Geotechnical Investigation Proposed Kuhnen Property East ½ of SW 34-39-27-W4M, Blackfalds, Alberta", submitted to Watikin Land Development Ltd. by Parkland Geotechnical Consulting Ltd., October 2006 (File # RD2208).

This assessment is only based on the boreholes and soil test data in the undeveloped portions of the two sites.

2.0 SITE AND PROJECT DESCRIPTION

The Aspen Lakes West Subdivision in Blackfalds, Alberta, covers eastern half of SW 34-39-27-W4M and a portion of the west side of SE 34-39-27-W4M as shown on the Site Plan (Figure 2). The site is located about 400 m east of Queen Elizabeth II Highway and bounded on the south and east side by residential areas and the north and west by farmland. Access to the site is from the east via Aspen Lakes Blvd. The east side of the subdivision property is Aurora Heights subdivision with a two small ponds. The surface coverage and site development is shown on the 2010 Aerial Photograph (Figure 3).

The property has a rolling topography. The overall relief at the site was about 8 m between boreholes with elevations that range from 875 m to 883 m. The average grade slope down to the north.

The proposed developments will be a mix of low to medium density residential developments accessed by an internal road network. The development will be tied into Town of Blackfalds' municipal infrastructure for water supply and sewage. Stormwater management facilities (ie. Storm ponds) are also proposed around the subdivision.

3.0 FIELD AND LABORATORY PROGRAMS

Two field and laboratory programs for the site investigation at this site were performed in 2002 and 2006.

- East ½ of SW 34-39-27-W4M was drilled on September 13, 2006. Four boreholes were drilled with truck mounted power auger drill to depths of 8 to 9 m below grade
- SE 34-39-27-W4M was drilled on November 20 and 22, 2002. Twenty three boreholes were drilled at the site locations laid out by MPE Engineering Ltd. Three of these boreholes were located within the proposed development of Aspen Lakes West Development. Boreholes were drilled with truck mounted power auger drill to depths of 7 m.

The previous site investigations did not comply with the current 150 m borehole spacing required by the Town. Based on the area of the proposed Aspen Lakes West Development, there should be 18 boreholes spaced across the entire site. In addition to the historical geodata, 11 boreholes were drilled at the site on April 30, 2015. The approximate borehole locations from the previous site investigation and the location for new additional boreholes are shown on the Site Plan, Figure 2. Locations of boreholes were selected to provide general coverage of the site. The following sampling and testing procedures were followed during the field program:

• Prior to mobilizing the drilling rig, ParklandGEO completed an Alberta One Call and cleared the proposed borehole locations of underground utilities.

- The boreholes were drilled using a geoprobe owned and operated by Can Drill Solutions Inc. of Lacombe, Alberta, using solid stem augers.
- Drilling operations were monitored by members of ParklandGEO's geotechnical personnel. The soil encountered was visually examined during drilling and logged according to the Modified Unified Soil Classification System.
- Standard Penetration Tests were performed at selected depth intervals in all boreholes.
- At the completion of drilling, 25 mm hand-slotting PVC standpipes were installed in 5 of the boreholes and backfilled with auger cuttings. Groundwater levels were monitored at completion of drilling and measured on May 7, 2015.
- Samples were taken at 1.0 m intervals to determine the soil/moisture profile.
- All soil samples were returned to ParklandGEO's Red Deer laboratory for possible further testing.
- The ground surface elevations and locations of the boreholes were surveyed by ParklandGEO personnel using a Trimble GeoXH 2008 Series GPS receiver and a Trimble Zephyr GPS antenna. UTM coordinates and elevations are provided in the borehole logs in Appendix A.

4.0 SUBSURFACE CONDITIONS

The soil profile encountered at the site was fine sand and sandy silt of variable thickness overlying lacustrine silt and sand. The sand depths vary due to topography. Detailed descriptions of the soil conditions encountered at the borehole locations are provided in the logs in Appendix A. Individual soil test results and definitions of the terminology and symbols used on the borehole logs are provided on the explanation sheets in Appendix A. The following is a brief description of the typical soil types encountered.

4.1 TOPSOIL

The surficial topsoil up to 400 mm thick was found at the borehole locations. Thicker depths of topsoil may be encountered between borehole sites particularly around the slough and pond at the east of the property. This moderately organic, black and moist topsoil layer was considered to be weak and compressible under load.

4.2 LACUSTRINE SILT, SAND AND CLAY

Layers of interbedded silt, sand and clay soils were encountered below the topsoil or surface in all boreholes. These lacustrine materials are considered to typical in this area. The lacustrine deposits were generally non to low plastic, silts and fine sand with interbeds of silty clay at a compact state. These deposits had moisture contents in the order of 2 to 33 percent. The interbedded silty clay in the lacustrine deposits was medium plasticity with stiff consistency. Typical moisture contents for the silty clay were in the order of 15 to 33 percent range. It is estimated the majority of the lacustrine soils were above the OMC. These wet silty deposits were considered to be highly frost susceptible and sensitive to disturbance.

4.3 WATER SOLUBLE SULPHATES

A soil sample was taken at a depth of 2.0 m in all boreholes for water soluble concentration testing. The concentration is expressed as percent of the dry mass of soil. The concentration of water soluble sulphate was below 0.1 percent which is considered to be negligible. However, it is worth noting that this area in Blackfalds is known for very high sulphates as indicated in the previously referenced geotechnical reports which indicates a "severe potential for sulphate attack on burried concrete in direct contact with soil". The sulphate concentration measured at the hole locations in the undeveloped areas of the site are shown on Figure 5.

5.0 GROUNDWATER LEVELS

Groundwater seepage was observed in the 7 boreholes drilled. Standpipes were installed in all boreholes. The groundwater levels measured on May 7, 2015 are summarized in the following table.

Borehole	Installation	Ground	Groundwate	er Level (mbg)	Groundwater
No.	Date	Elevation (m)	Upon Completion	After 7 days	Elevations (m)
2002-1	Nov 20/02	869.927	6.1	6.1	836.837
2002-6	Nov 20/02	874.956	Dry	Dry	< 867.956
2002-11	Nov 20/02	876.906	Dry	Dry	< 869.506
2006-1	Sep 13/06	-	Dry	Dry	-
2006-2	Sep 13/06	-	Dry	Well Destroyed	-
2006-3	Sep 13/06	-	Dry Dry		-
2006-4	Sep 13/06	-	Dry	Dry	-

TABLE 1HISTORICAL GROUNDWATER MEASUREMENTS

GROUNDWATER MEASUREMENT FOR 2015 BOREHOLES								
Borehole	Installation	Ground Elevation	Borehole	Groundwat (mbg	Groundwater			
No.	Date	(m)	Depth (m)	Upon Completion	May 7, 2015	Elevations (m)		
1	Apr 30/15	874.700	6.5	Dry	Dry	< 868.200		
2	Apr 30/15	875.363	6.0	Dry	Dry	< 869.363		
3	Apr 30/15	875.149	6.5	Dry	Dry	< 868.649		
4	Apr 30/15	876.120	6.0	Dry	Dry	< 870.120		
5	Apr 30/15	875.495	6.5	Dry	Dry	< 868.995		
6	Apr 30/15	875.858	6.0	Dry	Dry	< 869.858		
7	Apr 30/15	874.700	6.5	Dry	Dry	< 868.200		
8	Apr 30/15	875.553	6.5	Dry	Dry	< 869.053		
9	Apr 30/15	876.687	6.0	Dry	Dry	< 870.687		
10	Apr 30/15	881.332	6.0	Dry	Dry	< 875.332		
11	Apr 30/15	882.775	6.5	Dry	Dry	< 876.275		

TABLE 2GROUNDWATER MEASUREMENT FOR 2015 BOREHOLES

The groundwater levels measured for all the boreholes were dry except for Borehole 1 which was drilled in 2002. These groundwater conditions are considered to be typical for Blackfalds. Groundwater elevations are expected to fluctuate on a seasonal basis and will be highest after periods of heavy or prolonged precipitation and snow-melt. Groundwater seepage is expected for relatively shallow excavations at this site. The volumes of groundwater encountered will be dependent on seasonal conditions and the permeability of the soils within the profile.

6.0 DISCUSSION AND RECOMMENDATIONS

6.1 GEOTECHNICAL EVALUATION

The subsurface conditions at this site are considered to be suitable for continued residential development. Construction considerations are expected to be similar to those found in north Blackfalds. Based on the existing topography, it is expected that significant cut/fills will be undertaken to pre-grade and level the site including areas of fill over 2 m deep. The main geotechnical concerns regarding soil conditions and foundations at the site include:

- 1. Final grading will impact the thickness of fills placed at the site and it is anticipated that some of the local depressions will be in-filled in areas proposed for housing. Placement of fill below expected footing elevations will need to be carefully addressed and monitored to minimize the potential for foundation problems due to settlement. Housing developed around the pond area at northeast may subject to some setbacks from steeper slopes.
- 2. Relatively loose, wet lacustrine soils may be encountered during site development trenching, depending on where the final grade is set. The siltier lacustrine soils are considered to be marginally suitable for use as road base and trench backfill.
- 3. Drier surficial soils, where present, are considered to be relatively stable and have favourable engineering properties for use as site fill, trench backfill and road base subgrade, but will require moisture conditioning prior to placement and compaction.
- 4. Trench settlement should influence the layout of the underground services in the proposed subdivision to minimize or handle the potential for non-uniform subgrade due to trenching below roadways.
- 5. Silty clay soils will be moderately to highly frost susceptible if they are present and given access to free water or groundwater within the zone of seasonal frost (estimated to an average depth of 2.5 m). In general, the depth to the local water table for much of the site is relatively deep and will reduce potential heave in these frost susceptible soils.
- 6. bearing pressures for residential footing foundations will be suitable for the typical lightly loaded residential structures proposed.

6.2 SITE PREPARATION

It is recommended that all vegetation and topsoil be stripped from areas to be developed. Topsoil could be stockpiled for future use at the site. It is understood that the development will be levelled with a cut and fill operation, and for economic reasons, the native soil is expected to be used as general fill to raise lower areas of the site.

Fill required to bring the site up to grade should be: select sand; well graded coarse gravel; or low to medium plastic, inorganic clay. Most of the native surficial sand soils are considered to be suitable for this purpose. The lacustrine silt and clay soils are less desirable fill materials, however they may be used if they can be compacted to desired density levels. Moisture conditioning of the native soils may be required prior to use as fill in order to achieve desired levels of density.

The engineered fill placed during site grading at this site should be compacted to at least 95 percent of SPMDD. Uniformity of compaction is most important. The lift thicknesses should be governed by the ability of the selected compaction equipment to uniformly achieve the recommended density. It is recommended that a maximum lift thickness of 200 mm for granular fill and 150 mm for clay fill be utilized.

Special consideration must be given to deep fill areas below proposed residential structures (where fill depth are greater than 1.0 m below final grade). The engineered fill placed below structures should be uniformly compacted to at least 98 percent of SPMDD at a moisture content within 2 percent of OMC. The control of moisture content is considered to be important for the relatively dry, silty fill, because future wetting of these fill soils may cause significant settlement. These settlements could occur long after original construction depending on changes in the groundwater regime due to development (ie. lawn watering, servicing, etc.) and on normal seasonal conditions. If these density levels cannot be achieved using common fill during site grading, the footing bearing surfaces should be sub cut and underlain with select granular fills compacted to at least 98 percent. The depth of subcut should be determined at the time of construction and will depend on factors such as; age of fill, initial compaction, depth of fill, water table, footing configuration and loads. To reduce settlement potential and compactive effort needed to achieve maximum density, it is recommended that granular fill be placed at moisture contents zero to 2 percent below OMC.

If subgrade conditions in deep fill areas are soft, a thicker initial lift may be required to form a working base for subsequent construction. This condition is best addressed in the field at the time of construction. If subgrade conditions warrant the use of subgrade improvement gravel, it is possible, for lower lifts, to use less expensive select coarse gravel with a maximum aggregate size of 150 mm. If adequate density of deep fills is not achievable, other measures may be required to allow house development (ie. Pre-loads, staged development, etc). All residential lot and road development areas with deep fill should be subject to a detailed review to determine suitability and to provide recommendation for the proposed development.

6.3 SERVICE TRENCH INSTALLATION

6.3.1 Service Trench Excavation

It is expected that the majority of buried services will be installed within 4.0 m of ground surface. Therefore, excavations are not expected to extend below the groundwater table. Where excavations are proposed in the local sand, conventional trenched excavations with sloping sides and/or moveable shields are considered to be feasible. Open excavations at this site will require relatively flat side-slopes, particularly if wet conditions are encountered due to rain or runoff. Given the availability of space around the site, an open excavation is expected to be most economical. Side-slopes above the groundwater table should be at least 1H:1V or flatter. The degree of stability of excavated trench walls decreases with time and, therefore, construction should be directed at minimizing the length of time service trenches are left open.

If excavations are required in sands below the water table, very flat side slopes and/or dewatering measures such as sumps or well points may be required. The local sand is relatively permeable and will allow seepage into site excavations. Based on local experience with similar soil profiles in Blackfalds, side-slopes in the order of 3H:1V, or flatter, are expected for deeper excavations into the water table. Steeper cuts may be possible depending on contractor procedures, weather conditions and observed soil conditions in the excavation. The alternative would be to reduce the size of the excavation by many different configurations of braced/slope excavations and dewatering measures. Similarly, trench basing problems may be encountered if construction takes place during high groundwater (wet weather periods).

Surface grading should be undertaken so that surface water is not allowed to pond adjacent to service trenches. Surcharge loads, including excavation spoil, should be kept back from the crest of the excavation a minimum distance equal to the excavation depth. Monitoring and maintenance of the slopes should be carried out on a regular basis.

Installation of underground services and utilities requires an observational approach be adopted which should combine past local experience, contractor's experience and geotechnical input. It would be desirable for the selected excavation contractor to be experienced in similar conditions. Quality workmanship is essential. Once disturbed, deep saturated cohesionless soils require very expensive measures to rehabilitate.

Notwithstanding any of the above comments, excavations should be carried out in accordance with Alberta Occupational Health and Safety Regulations.

6.3.2 Pipe Bedding

Ideally, granular pipe bedding should be relatively well graded sand or sand gravel mixture which can be readily compacted around the pipe to achieve a high frictional strength. Bedding soils must have an appropriate gradation so that migration of natural soils into the granular system is minimized. Uniform or gap-graded sands and gravels should not be used as bedding materials unless adequate provision is made to surround such soils with a filter fabric or graded

granular filter compatible with the existing subsoils. Select native materials such as fine sand may be proposed for bedding. However, the use of these materials may require a higher level of compaction in order to satisfy the pipe manufacturer's requirements for adequate pipe support. Native materials consisting of high plastic clay or wet, silty clay that cannot be adequately compacted should not be used for pipe bedding. If granular bedding material is proposed, the following gradation specifications are recommended.

	Percent Passing By Weight					
Sieve Size (mm)	Native Sand	Clean Sand	Drain Rock			
50	-	-	100			
40	-	-	95 - 100			
20	-	-	5 -10			
10	-	100	0 - 5			
5	100	90 -100	0 - 5			
2.5	-	80 - 95	-			
1.25	66 - 100	55 - 85	-			
0.63	52 - 100	30 - 65	-			
0.315	35 - 78	10 - 35	-			
0.160	18 - 43	2 - 10	-			
0.080	2 - 12	0 - 8	-			

TABLE 3 GRADATION SPECIFICATIONS - GRANULAR BEDDING MATERIAL

Minor deflections of the trench bedding are expected. Underground utility pipes should be of a type which will maintain watertight joints (i.e. rubber gasket) after minor shifting has occurred. Bedding requirements are a function of the class of pipe and trench configuration, as well as site specific geotechnical considerations.

In the event of significant groundwater seepage or wet base conditions, additional pipe foundation measures may be required. Typically these measures include placement of a working mat of free draining gravel and filter cloth after lowering of the water table and removal of disturbed soils. This layer of gravel is intended to be a safe working base and the thickness required will be based on keeping groundwater below the working surface. The function of the geotextile in pipe bedding applications is to act as a separation barrier between the coarse bedding materials and the native fine grained soils, therefore it needs to be strong enough to withstand construction activity.

6.3.3 Trench Backfill

It is assumed that trench backfill will consist of excavated sand or silty clay materials. The native sand is considered to be suitable for backfill, but may require removal adjustment of the natural moisture content to achieve proper compaction. Soil used for trench backfill should be free of frozen material, organics, and any other undesirable debris. To minimize fill settlement under self-weight, it is not recommended to allow the use of excavated soil for fill where the water

content exceeds the OMC of the soil by more than 5 percent. If excavated soils are excessively wet, the material should be dried or blended with dry soil prior to use.

Trench backfill in building areas should conform with the recommendations given under the site preparation discussion. In other developed areas, trench backfill should be placed in maximum 150 mm thick lifts compacted to 95 percent of the SPMDD to within 1.5 m of the finished ground surface and to a minimum 98 percent of the SPMDD from 1.5 m below ground surface to grade. The lift thicknesses should be governed by the ability of the selected compaction equipment to uniformly achieve the recommended density. It is recommended to use lifts with a maximum compacted thickness of 150 mm for clay soils.

Some settlement of the compacted backfill in trenches under self-weight is expected to occur. The magnitude and rate of settlement would be dependent on the backfill soil type, the moisture condition of the backfill at the time of placement, the depth of the service trench, drainage conditions and the initial density achieved during compaction. For the compaction recommendations given above it is expected that total settlement in the order of 0.5 to 1.0 percent of the trench depth will occur. For properly moisture conditioned sand backfill the majority of the settlement is expected to occur with 2 to 4 months of backfill. Silty soils will take slightly longer to consolidate. Density monitoring of backfill placement is recommended to encourage better attention to quality workmanship in placement. Fill materials with variable moisture contents recompacted as trench backfill will not provide uniform roadway subgrades for the support of pavement sections. To minimize the effects of potential settlements on completed roadway surfaces, it is recommended that staged asphalt pavement construction be adopted and that placement of final asphalt concrete surfacing materials be delayed as long as possible, subsequent to completion of trench backfilling.

6.4 **BASEMENT FOUNDATIONS**

6.4.1 Footings

Standard house basement foundations using strip and spread footings will be acceptable at this site. Footings based on native sand or engineered fill may be designed based on a maximum allowable bearing pressure of 100 kPa for footings placed on undisturbed inorganic soil free from loosened material. The sand is expected to be easily disturbed, so it is suggested to finish the final 25 to 50 mm of excavation by hand after footing forms are placed to minimize disturbance to the bearing surface. The design and construction of residential foundations should conform to Alberta Building Code - Section 9. In general, footing excavations should be protected against surface water; footing bases should not be allowed to dry out excessively during construction; and the bearing soil should be protected against freezing during and after construction.

6.4.2 Grade Supported Slabs

Floor slabs should rest on at least 150 mm of free draining, granular base. Suitable materials would include coarse sand or crushed gravel with less than 10 percent passing the 0.080 mm sieve. The drainage layer below the slab should be compacted uniformly to at least 95 percent of SPMDD. Small vertical subgrade movements may be experienced therefore, provisions should be made for movements between partitions and adjoining columns or load bearing walls. In addition, where partitions are placed under structural members a space should be left at the top of the partition to allow vertical movement (at least 25 mm). Columns in basements which support floor joists should be adjustable. Water lines should be installed carefully to minimize the potential for breakage and leaks below slabs. Heating ducts below grade should be insulated to prevent drying of the subgrade soils.

6.4.3 Basement Subdrainage System

A permanent sub-drainage system (weeping tile drain) is recommended around the outside perimeter of basements. Lateral drains below the house are recommended in areas where the average groundwater table is within 1 m of the underside of basement slabs to reduce the hydrostatic pressures against foundation walls and floor slabs. Weeping tile drains should be surrounded with free draining crushed or washed rock. If required, a suitable geotextile wrap should be utilized to prevent the fine grained native soil from being washed into the drain. Groundwater infiltration flows can be significantly increased by poor site drainage around houses, improperly directed roof leaders and poorly graded or compacted backfill.

6.4.4 Basement Excavations

For basement excavations deeper than 1.5 m, side slopes should be cut back to 1H:1V from the base. If space does not permit the slopes to be cut back, some form of temporary shoring must be installed to protect workers in the excavation. The latest edition of the Construction Safety Regulations of the Occupational Health and Safety Act of Alberta should be followed.

For proposed basements excavated during wet weather or with elevations close to the groundwater table elevation, construction traffic from tractor dozer type equipment could cause the disturbance of the subgrade resulting in a significant weakening of the subgrade. In this case, excavation is best carried out with backhoe or "Gradall" equipment.

6.4.5 Basement Backfill

Backfill soils are capable of exerting significant horizontal pressures onto a basement wall. It is recommended the backfilling be delayed until the concrete has gained enough strength to support the horizontal loads. The top and bottom of the wall should be braced prior to backfilling. Therefore, it is recommended to place the basement floor slab and floor joists prior to backfilling around walls. Backfill should be brought up evenly around the building perimeter to minimize differential horizontal pressures on the basement walls.

Rather than heavily compacting the backfill around the basements, it is recommended to nominally compact the backfill (90 - 95 percent of SPMDD) recognizing that settlement of the backfill will occur, particularly after the first freeze/thaw and moisture infiltration cycle. Backfill around basement walls should be sloped to shed water away from the structure with a recommended slope of at least 5 percent. The slope of the backfill should be checked periodically to maintain the slope of the ground surface away from the wall. Roof leaders from houses and garages may be discharged onto the ground surface well clear of the foundation walls to help reduce wet weather infiltration of water into the sub-drainage weeping tile system.

6.5 CONCRETE

The water-soluble sulphate concentration from the sample tested indicates negligible potential for chemical attack of subsurface concrete, however the Blackfalds area is known to have areas with very high sulphates. Therefore high sulphate-resistance (Type HS) hydraulic cement is recommended for use in all subsurface concrete in contact with native soil at the site in accordance with CSA Standard CAN3-A23.1-14. The recommended minimum 56 day compressive strength is 32 MPa with a maximum water/cementing materials ratio of 0.45. All concrete exposed to a freezing environment either during or after construction should be air entrained.

6.6 ROADWAY SUBGRADE CONSTRUCTION

The native silty sand soil was found to have CBR value of 5.0. This CBR value is indicative of a moderate level of subgrade support. In general, the subgrade support from the drier sand would be greater than from areas of silty clay. The CBR value for local clay is expected to be 3.0 to 4.0.

The exposed subgrade surface should be proof-rolled to identify soft areas. These areas should be subcut and replaced with suitable fill compacted to 95 percent of SPMDD. The depth of excavation should be sufficient to remove the soft material or to bridge over the soft material. When soft subgrade areas are encountered during construction, the typical local practice is to remove and replace the weak soils with a thick layer of coarse granular fill for subgrade improvement. The excavation of sensitive soils should be performed by a tracked backhoe rather than dozer equipment to minimize disturbance to the subgrade. The recommended type of subgrade fill would be a relatively clean coarse graded gravel with a maximum aggregate size of 150 mm. A proposed gradation specification is provided below:

Sieve Size (mm)	Percent Passing By Weight
150	100
75	80 - 100
25	50 - 75
5	25 - 55
0.08	2 - 10

TABLE 4 150 MM COARSE GRADED GRAVEL

This material is generally placed at the same time as the granular subbase of the pavement section resulting in a thick lift of coarse granular material below the asphalt and base course gravel layers. Based on local experience, the gravel subbase thickness required to establish a stable construction base will be in the order of 200 mm to 500 mm.

Construction procedures should be designed to minimize disturbance to the subgrade and protect the integrity of the granular working mat. If the subgrade is failed during construction, it can lead to costly replacement of weakened soils. The need for any special construction procedures is best determined based on observations at the time of construction. Therefore, construction of roads will require careful monitoring by an experienced soils technician to avoid costly construction problems.

6.7 FLEXIBLE PAVEMENT DESIGN

Two flexible pavement designs are proposed for this residential subdivision, a light traffic section for the local residential streets, and a moderate traffic section for the residential collectors. For design purposes the Design Traffic in equivalent axle loads (80 kN axles) is 9 x 10^4 for local side roads and 1 x 10^6 for the proposed residential collector road in accordance with the Town of Blackfalds Design Guidelines. The flexible pavement sections provided below are based on a minimum design CBR of 4 for the native subgrade in a soaked condition. It is assumed that the subgrade is stable or localized soft areas will be subject to improvement measures as discussed above to provide an equivalent the level of subgrade support. Based on these assumptions the following flexible pavement sections are proposed:

Pavement Layer	Local	Collector			
Design Traffic (ESAL's)	9 x 10 ⁴	1 x 10 ⁶			
Asphalt Concrete 25 mm Crushed Base Gravel Granular Sub-Base (minimum)	75 mm 150 mm 200 mm	100 mm 150 mm 300 mm			

TABLE 5 FLEXIBLE PAVEMENT DESIGN

The performance of the proposed pavement design sections will be, in part, dependent on achieving an adequate level of compaction in subgrade and pavement materials. The recommended levels of compaction for the granular materials in the pavement section should be a minimum of 98 percent of SPMDD. To include the minimum thickness of granular subbase (as listed above) in the pavement section the upper portion of the layer must meet the 98 percent compaction standard. The asphalt concrete should be compacted to a minimum of 97 percent of Marshall density based on a 50 blow laboratory Marshall test.

Pavement materials should conform to the Town of Blackfalds specifications. Alternatively, it is recommended to use pavement materials conforming to the following specifications:

Specification
8.0 2 - 4
3 - 5
150-200 (A)

TABLE 6ASPHALT CONCRETE

Aggregate materials for base and subbase gravel should be composed of sound, hard, durable particles free from organics and other foreign material. Alternate aggregate materials include the following Alberta Transportation specifications.

TABLE 7 RECOMMENDED AGGREGATE SPECIFICATIONS

	AT Specifications
Asphalt Gravel	Designation 1, Class 16
Crushed Base Gravel	Designation 2, Class 20 or 25
Subbase Gravel	Designation 2, Class 40

Copies of these aggregate specifications are provided in Appendix A. Based on availability of local materials at the time of tendering or construction, alternate materials could be considered upon review by the geotechnical engineer.

The road surface should be sloped and graded to effectively remove all surface water as rapidly as possible. To minimize the occurrence of surface water ponding in the roadways, finished surface grades and cross slopes in the order of 2 percent are recommended. Allowing water to a pond on the pavement surface will lead to infiltration of water into the subgrade which could result in weakening of the subgrade soils.

No special pre-design considerations are given to thickening the pavement section over backfilled trenches. Thickening the pavement section will not significantly reduce the problems of long term fill settlement. The settlement of trenches is caused mainly by the long term self weight of the fill, not the short term live loads from traffic. The road section or the thickness of granular subbase placed over trenches in the road bed should be decided based on the level of support expected from the subgrade based on field observations. The final asphalt surface should be delayed as long as possible after placement of the fill to allow time for fill settlement.

6.8 GRAVELLED LANES

It is understood gravel surfaced back lanes may be proposed for this subdivision. Expected traffic will include light vehicles, regular garbage collection trucks, grading equipment and occasional truck traffic. If gravel lanes are proposed, it should be noted that more vertical movement would be tolerated since annual maintenance of grades would be performed. The proposed lane pavement sections are based on a stable subgrade with design CBR of 4 in a soaked condition or subgrade improvement to an equivalent level of support.

Pavement Sections	Gravel Lanes		
Design Traffic (ESAL's)	5 x 10 ³		
20 mm Crushed Base Gravel Subbase Gravel (minimum)	250 mm -	150 mm 200 mm	

TABLE 8PROPOSED GRAVEL PAVEMENT SECTIONS FOR LANES

The recommended levels of compaction for the granular materials should be a minimum of 98 percent of SPMDD. The gravel specifications in the preceding section may be used. If subbase gravel with a large maximum aggregate size is proposed the thickness of the subbase layer should be at least twice the diameter of the largest particle size. It is recommended to provide surface drainage with cross slope crowns of at least 2 percent on regularly maintained gravel lane surfaces. Allowing water to pond on gravel surfaces will lead to infiltration which could result in subgrade weakening and the associated higher maintenance costs.

6.9 INSPECTION

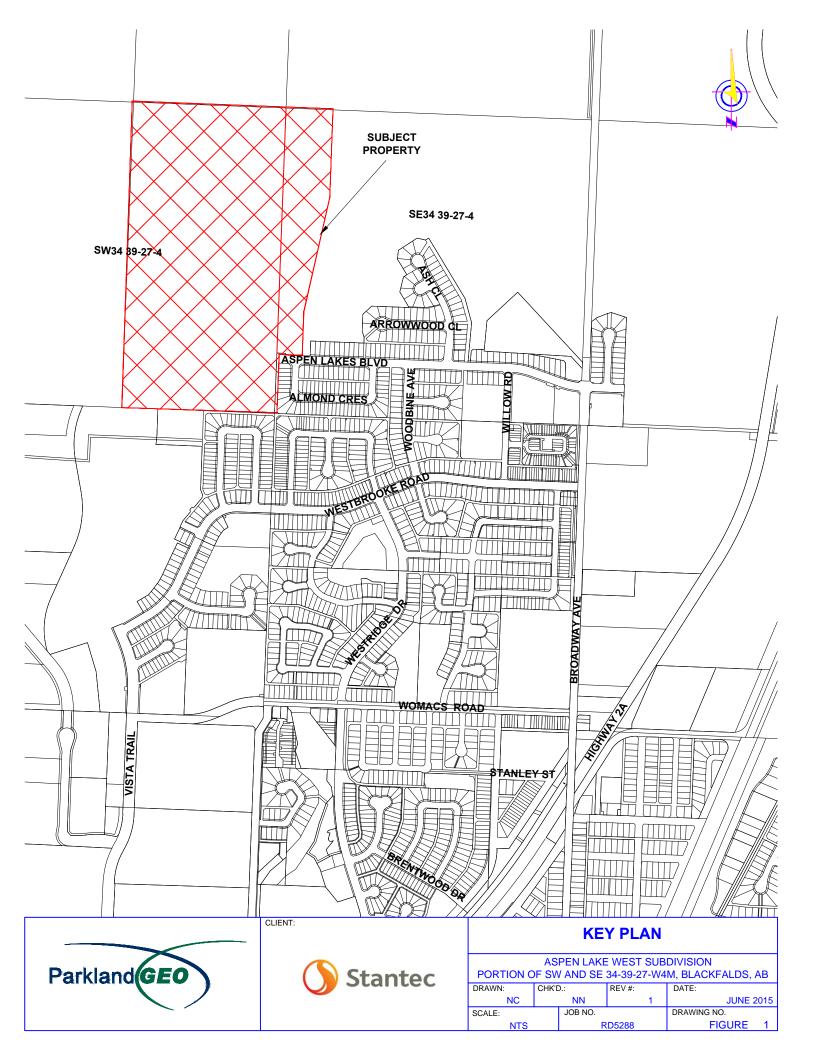
It is recommended that on-site inspection and testing be performed to verify that actual site conditions are consistent with assumed conditions which meet or exceed design criteria. The recommendations provided within this report are dependent on proper quality control of fill placement. Initial site stripping and excavation activities should be monitored by experienced and qualified geotechnical personnel. The placement of an engineered fill should be monitored and tested by a qualified soils technician to verify adequate levels of compaction and design standards are achieved. Based on the Alberta Building Code, adequate levels of inspection are considered to be: review of all completed bearing surfaces for footings and full time inspection during construction of deep foundations; and monitoring and compaction testing of engineered fill.

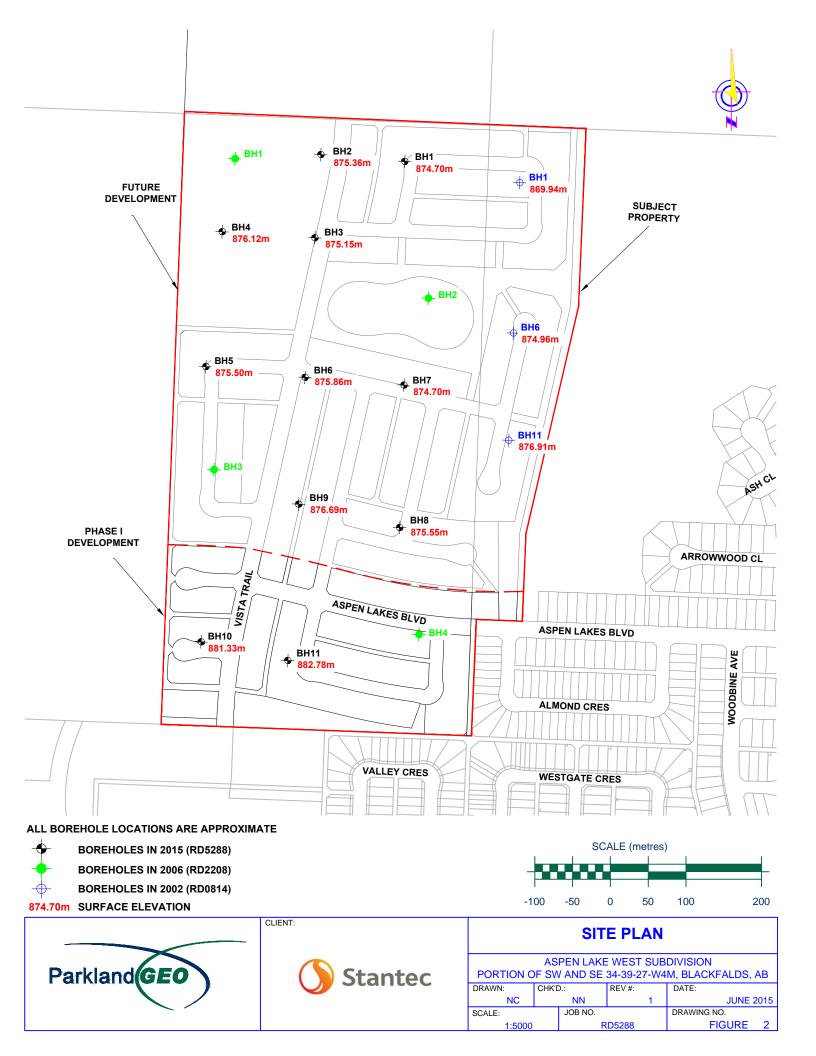
7.0 CLOSURE

This report is based on the findings at the 18 boreholes at the site. If new information or different subsoil/groundwater conditions are encountered, this office must be notified and recommendations submitted herein will be reviewed and revised as required. This report has been prepared for the exclusive use of **Aspen Lake West Development Inc., Stantec Consulting Ltd.** and their approved agents for the specified application to the proposed residential subdivision within portion of SW and SE 34-39-27-W4M in Blackfalds, Alberta. This report has been prepared in accordance with generally accepted soil and foundation engineering practices. No other warranty, expressed or implied, is made. The limitations of this report are specified in the General Terms and Conditions section and should be considered part of this report.

Respectfully submitted, **PARKLAND GEOTECHNICAL CONSULTING LTD.** A.P.E.G.A. Permit #07312

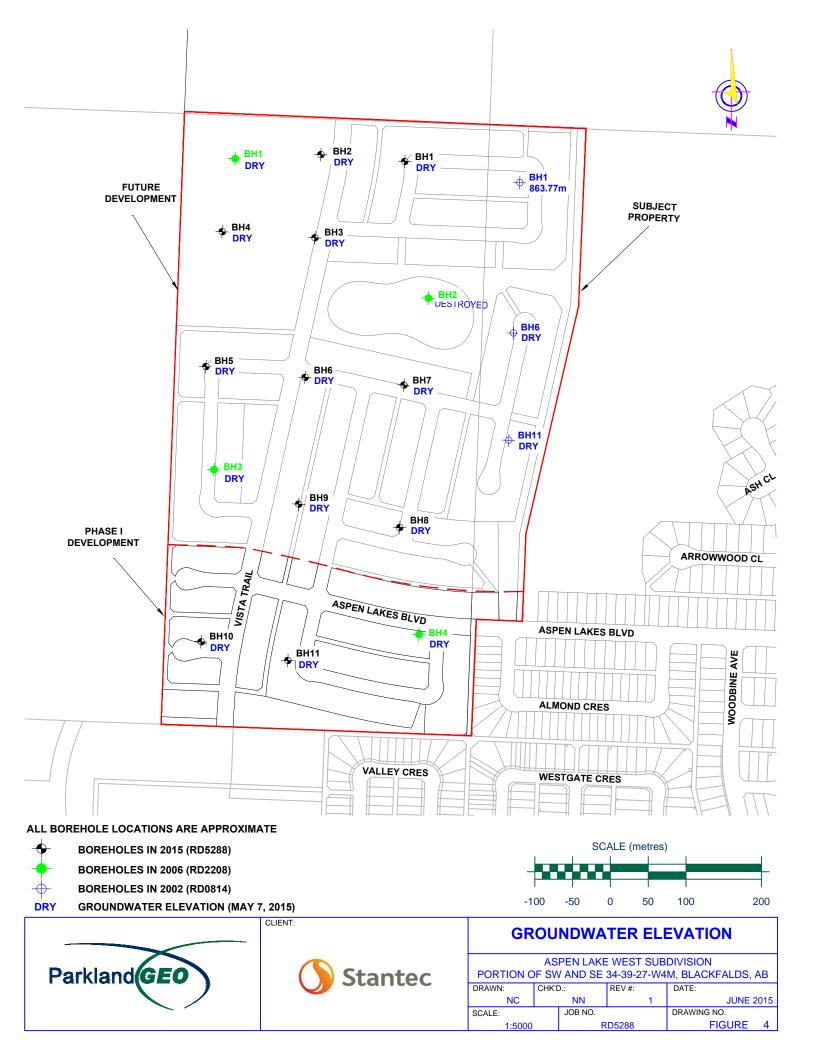
Nick Ng, P.Eng Geotechnical Engineer

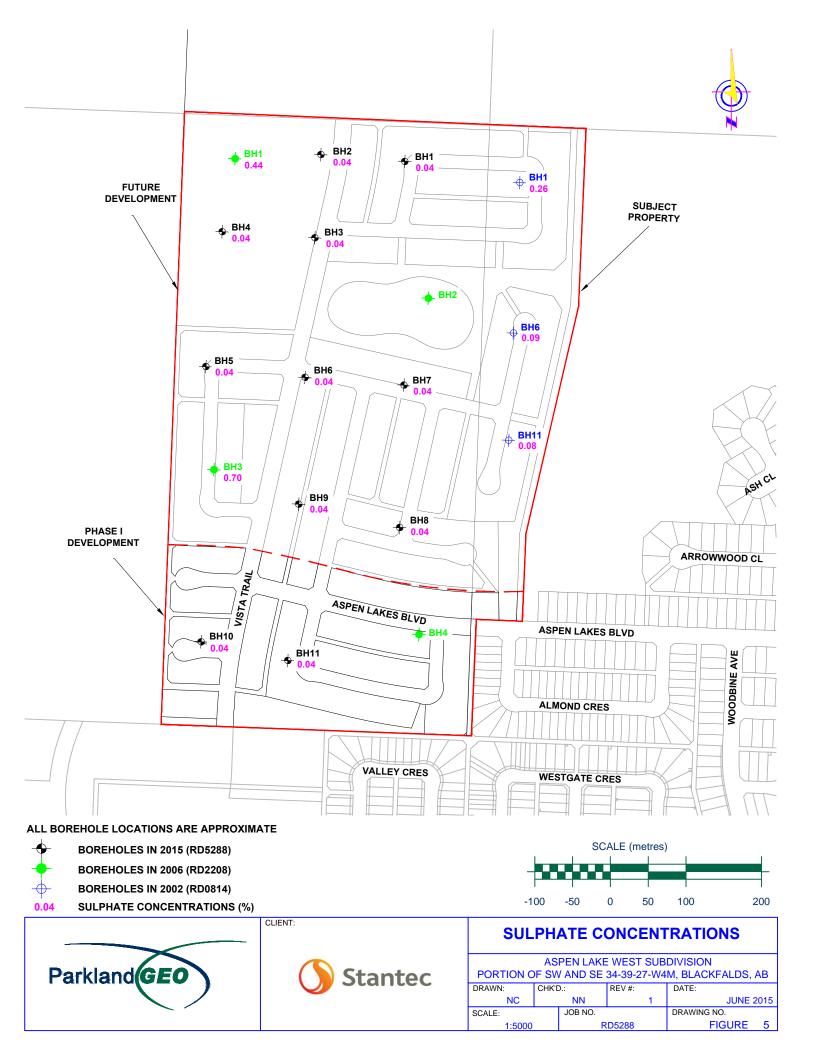

Reviewed By: Mark Brotherton, P. Eng.

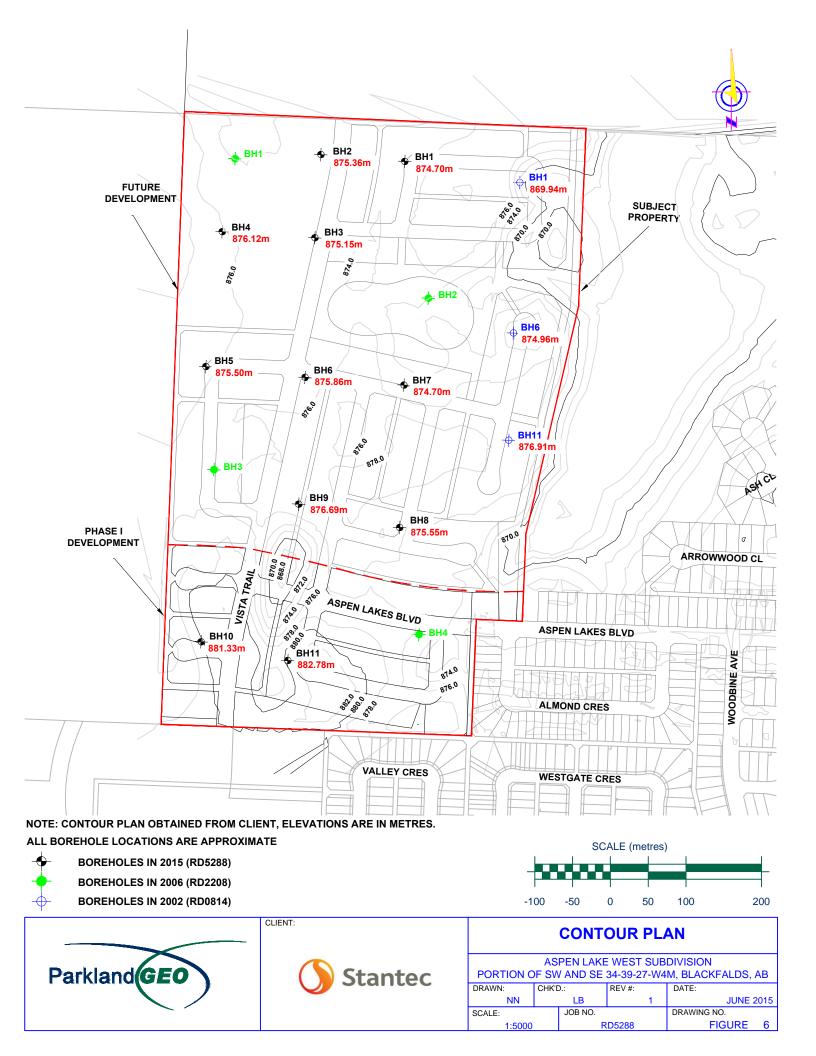


FIGURES Figure 1 - Key Plan Figure 2 - Site Plan Figure 3 - 2010 Aerial Site Plan Figure 4 – Groundwater Plan Figure 5 – Sulphate Content

Figure 6 – Contour Plan






NOTE: AERIAL PHOTOGRAPH OBTAINED FROM ABACUS DATAGRAPHICS LIMITED, DATED MAY 9, 2013 TO JULY 3, 2013.

ALL BOREHOLE LOCATIONS ARE APPROXIMATE

			SCALE (metres)						
NEW BOREHOLES (2015)				_	-				
BOREHOLES IN 2006 (RD2208)		_		00					
		-10	00 -50)	0	50	100	200	
	CLIENT:	AERIAL PLAN							
Parkland	Stantec	ASPEN LAKE WEST SUBDIVISION PORTION OF SW AND SE 34-39-27-W4M, BLACKFAL				S, AB			
		DRAWN: NC	CHK'D.: N	IN	REV #:	1	DATE: JUN	IE 2015	
		SCALE: 1:5000	JOE	3 NO. R	RD5288		DRAWING NO. FIGUR	E 3	

APPENDIX A

Borehole Logs Soil Test Results AT Specifications Explanation Sheets

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 01

	SUBSURFACE PROFILE								Ê
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)
0-	GROUND SURFACE	<u> 24</u> - <u>24</u> -							874.70
-	Topsoil Organic, black, moist.	4 <u>85 8</u> <u>85</u> <u>86</u> <u>85</u> <u>86</u>							874.40
- - 1-	Clay Little silt, trace sand, firm to stiff, low plastic, brown, damp.		24	G	1G1				
_									070.00
- - 2- -	Sand Little silt, compact, fine grained, brown, occcasional black staining, dry.	12522-0269	4				SO ₄ = 0.04	A BOLID PVC PIPE SOLID PVC PIPE HAUGER CUTTINGS	873.30
-								A BACKFILLED WITH AUGER CUTTINGS	
3-			4						
_					1D1	18		AUGE	
-								*	
_			5	G					
4-			•		1G2				
- - 5 - -		•	4					-SLOTTED PVC PIPE	
_			13						
6-	- Black staining, wet at 5.9 m.		•		1D2	14			
-	End of hole at 6.5 m.				102	14			868.20
- 7- -	25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015.								867.20
								l. 974 700	
	LOGGED BY: AZ CONTRACTOR: Darkhorse Dril RIG/METHOD: Geoprobe/ Solid DATE: April 30, 2015 CALIBRATION:	_				N	ROUND ELEVATION ORTHING: 5808902. ASTING: 308887.517	012	1 of 1

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 02

Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)	
	GROUND SURFACE Topsoil Organic, black, moist. Clay Little silt, trace sand, stiff, low to medium plastic, brown, occasional black staining, damp. Little silt, compact, fine grained, brown, damp. - little gravel at 1.9 m. Silt Little clay, little sand, stiff, non plastic, brown, occasional rust staining, damp. Clay Little to some silt, trace sand, stiff, medium plastic, brown, damp. Little to some silt, trace sand, stiff, medium plastic, brown, damp. Vittle to some silt, trace sand, stiff, medium plastic, brown, damp. Vet at 6.0 m. End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion.		17 9 12 18 5 5 13	G	2G1 2D1 2G2 2G2 2D2	14	SO4 = 0.04	OLID PVC PIPE Solid PVC	875.36 873.76 873.26 872.26 872.26 870.76 869.36	
	LOGGED BY: AZGROUND ELEVATION: 875.363 mCONTRACTOR: Darkhorse Drilling Ltd.NORTHING: 5808906.279RIG/METHOD: Geoprobe/ Solid StemEASTING: 308776.307DATE: April 30, 2015PAGE 1 of 1									

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 03

	SUBSURFACE PROFILE								
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)
0-	GROUND SURFACE	<u>84</u>		ł					875.15
	Topsoil Organic, black, moist.	1117							
-	Silt								
	Little clay, little sand, firm, non plastic, brown, damp.								
1			9						874.05
	Sand							▲ SOLID PVC PIPE ■ SOLID PVC PIPE ● ■	074.05
-	Little silt, trace gravel, compact, fine grained, brown, occcasional black								
-	staining, dry.							SOLID PVC PIPE	
-			2						
2-							$SO_4 = 0.04$		
				G			Grain Size Analysis:	ACKFILLED WITH AUGER CUTTINGS	
					3G1		Gravel - 4.4% Sand - 84.3%		
3-			3				Silt and Clay - 11.3%		
-					3D1	14		n GE	
-							-	· · · · · · · · · · · · · · · · · · ·	
-									
			4						
4-									
-			2						
5-								LED P	
								STO STO	
				G	3G2				
6-			2				-		
_					3D2	9			
-					502				868.65
	End of hole at 6.5 m. 25 mm PVC standpipe installed.								
	Backfilled with auger cuttings.								
7-	Dry upon completion. Dry on May 7, 2015								
									007.07
									867.65
	LOGGED BY: AZ					G	ROUND ELEVATION	l: 875.149 m	
	CONTRACTOR: Darkhorse Drilling Ltd. NORTHING: 5808796.002								
	RIG/METHOD: Geoprobe/ Solid	d Ste	em			E	ASTING: 308773.148	3	
	DATE: April 30, 2015								
	CALIBRATION:							PAGE	1 of 1
L									

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 04

	SUBSURFACE PROFILE										
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)		
0-	GROUND SURFACE	24 . 24							846.12		
	Topsoil Organic, black, moist. Silt Little clay, little sand, stiff, non plastic, brown, occasional rust staining, damp. Sand Little silt, trace gravel, compact, fine		8					+	845.02		
-	grained, brown, damp.		-		4D1	18		SOLID PVC PIPE			
2-			7				$SO_4 = 0.04$				
-								 CUT 			
3-			11	G	4G1			PIPE + +			
-								TH A			
	- Dry at 3. 4 m.										
-			4								
4-			•					PIPE-			
-					4D2	13		LED			
5-			4								
-											
-			5						840.12		
6	End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015.		•					¥ 1231—1285 ¥			
7-											
									838.62		
	LOGGED BY: AZGROUND ELEVATION: 876.120 mCONTRACTOR: Darkhorse Drilling Ltd.NORTHING: 5808798.829RIG/METHOD: Geoprobe/ Solid StemEASTING: 308650.323DATE: April 20, 2015Control of the second s										
	DATE: April 30, 2015 CALIBRATION: PAGE 1 of 1										

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 05

	SUBSURFACE PROFILE									Ê
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Comp Detail	oletion s	Elevation (m)
0-	GROUND SURFACE	4.44							1	875.50
-	Topsoil Organic, black, moist.	<u>85 8</u> 6 36								875.29
- - 1-	Sand Little silt, trace gravel, compact, fine grained, brown, damp.		6	G	5G1		20.000		T	
'_							SO ₄ = 0.03			
_								IPE-		
- 2- -	Silt Little clay, little sand, stiff, non plastic, brown, occasional rust staining, damp. Sand Little silt, loose to compact, coarse grained, brown, dry to damp.	1.10.1	6				SO ₄ = 0.04	 SOLID PVC PIPE SOLID PVC PIPE 	BACKFILLED WITH AUGER CUTTINGS	873.89 873.70
_	grainea, brown, ary to damp.								UTTU	
3-			5						ERC	
_					5D1	5			AUGI	
_								*	TH /	
_									IM C	
4-		4							ILLEI	
_									CKFI	
_									-BA	
_								TTED PVC PIPE		
5-	- Fine grained at 4.7 m.	4	4					PVC		
-								DTTED		
_								SLOT		
_				G	5G2					
6-			5							
0					500	10				
_					5D2	16				869.00
- 7- -	End of hole at 6.5 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015.							<u>.</u> <u>1657</u> 165	Ŧ	
_										868.00
	LOGGED BY: AZ CONTRACTOR: Darkhorse Drillin RIG/METHOD: Geoprobe/ Solid	_				N	ROUND ELEVATION ORTHING: 5808619. ASTING: 308636.283	696	1	
	DATE: April 30, 2015 CALIBRATION:								PAGE	1 of 1

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 06

	SUBSURFACE PROFILE				_		-		Ê
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)
0-	GROUND SURFACE	4.34							875.86
- - - - 1-	Topsoil Organic, black, moist. Sand Little silt, compact, fine grained, brown, damp.		5					Contraction of the second	875.66
_									
-					6D1	7		SOLID PVC PIPE	
2-		1	6				SO ₄ = 0.04	S S S	
_								PIPE + +	
_									
3-			7	G	6G1			AUGE	
-								WITH	
-									
4-			9					PIPE-	
_								PVC P	
-					6D2	14			
5—		1	6						
_									
-			_						
6	End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015.		7					⊥ <u></u> ∰ ⊥	869.86
7—									
-									868.36
	LOGGED BY: AZ					G	ROUND ELEVATION	l: 875.858 m	
	CONTRACTOR: Darkhorse Drilli RIG/METHOD: Geoprobe/ Solid	_					ORTHING: 5808610. ASTING: 308767.947		
	DATE: April 30, 2015	SIE	111				AUTING. 300707.347		
	CALIBRATION:							PAGE	1 of 1

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 07

			1					
Î	SUBSURFACE PROFILE			No		ants	Well Completion	(m) nc
Depth (m)	Description	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Details	Elevation (m)
0-	GROUND SURFACE						T	874.70
-	Topsoil Organic, black, moist.							874.50
-	Sand Little silt, compact, coarse grained,						Î	070.00
-	brown, damp.	17						873.90 873.70
1	Little clay, little sand, firm, non plastic, brown, occasional rust staining, damp.							
	Sand						SOLID PVC PIPE	
_	Little silt, compact, coarse grained, brown, damp.	_					PVC BR	
2-	,	7				SO ₄ = 0.04		
-								
-								
-								
		5					CO	
3-							A CUTTINGS	
_				7D1	11			
_								
-		-						
4-		5				Orain Cine Analysia		
-			G	_		Grain Size Analysis: Sand - 86.0%	CK B	
-				7G1		Silt and Clay - 14.0%	PEBA	
-								
5-		6						
–								
_							SLOT	
-								
-		6						
6-		•						
-				7D2	11			
-	End of hole at 6.5 m.							868.20
	25 mm PVC standpipe installed.							
7-	Backfilled with auger cuttings. Dry upon completion.							
_	Dry on May 7, 2015.							
-								867.20
<u> </u>								
	LOGGED BY: AZ					ROUND ELEVATION		
	CONTRACTOR: Darkhorse Drillin	-				ORTHING: 5808606.		
	RIG/METHOD: Geoprobe/ Solid	Stem			E	ASTING: 308899.106	5	
	DATE: April 30, 2015							1 -6 1
	CALIBRATION:						PAGE	1 01 1

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 08

	SUBSURFACE PROFILE								Ê
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)
0-	GROUND SURFACE	24.34						× 12/2 12/28	875.55
-	Topsoil Organic, black, moist.	25 25 9 25 3 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							875.15
	Sand Little silt, compact, coarse grained, brown, damp.		20					 ▲ SOLID PVC PIPE SOLID PVC PIPE IIIH AUGER CUTTINGS 	874.65
1-	Clay Some silt, trace sand, stiff, medium plastic, brown, occasional black and		•	G	8G1		_		
_	rust staining, moist.						-		
2-			29 •				SO ₄ = 0.04	SOLID PVC PIPE	
-								- S I CS	
-			33					A BACKFILLED WITH AUGER CUTTINGS	
3-			•				Grain Size Analysis: Sand - 1.8%	GER	
					8D1	12	Silt - 32.3% Clay - 65.8%	INU	
-								* HIN	
-			32						
4-			•						
-								ACK	
			24						
5-			24						
-									
								-SLO	
				G	8G2				869.75
6-	Silt Little clay, little sand, stiff, non plastic,	+	14				-		
	brown, occasional rust staining, damp.				8D2	17			869.05
	End of hole at 6.5 m. 25 mm PVC standpipe installed.							<u> </u>	
	Backfilled with auger cuttings.								
7-	Dry upon completion. Dry on May 7, 2015.								
									868.05
	LOGGED BY: AZ						ROUND ELEVATION		
	CONTRACTOR: Darkhorse Dri					ORTHING: 5808417.			
	RIG/METHOD: Geoprobe/ Solid	d Ste	em			E	ASTING: 308901.476	5	
	DATE: April 30, 2015 CALIBRATION:							PAGE	1 of 1

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 09

GROUND SURFACE and the send state of t		SUBSURFACE PROFILE				0		<i>(</i>)		Ê
0 Orgonic Mack, most. 976.39 0 Orgonic Mack, most. 977.39 3 Sint 901 7 3 Sint 901 7 3 - Fine grained at 2.1 m. 901 7 3 - Fine grained at 2.1 m. 901 7 4 - Fine grained at 2.1 m. 901 7 5 - Fine grained at 2.1 m. 902 10 6 - Fine grained at 2.1 m. 902 10 5 - Fine grained at 2.1 m. 902 10 6 - Construct Table of the orgon	Depth (m)	Description	Top (Wp X- 25 50		Type	Sample No	SPT (N)	Comments		Elevation (m)
Surd Site 975.89 Surd Site 975.60 Surd Sone 0.04 901 7 Sone 0.04 Sone 0.04 901 7 Sone 0.04 Sone 0.04 901 7 Sone 0.04 Sone 0.04 902 10 Sone 0.04 Sone 0.04 902 10 Sone 0.04 Sone 0.03 902 10 Sone 0.04 Sone 0.03 902 10 Sone 0.04 Sone 0.03 902 10 Sone 0.03 Sone 0.03 902 10 Sone 0.04 Sone 0.03 902 10 Sone 0.03 Sone 0.03 902 10 Sone 0.04 Sone 0.03 902 10	0-		24 · 34						T	876.69
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained		Organic, black, moist.								876.39
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained		Little silt, trace gravel, compact, fine								875.89
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained	1-	Little clay, little sand, stiff, non plastic, brown, occasional rust staining, wet.	6 •							875.69
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained	-								PVC	
Little to trace gravel, coarse grained at 4.6 m. Subscription of the state of the stat		grained, brown, dry to damp.				9D1	7			
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained	2-			- F				SO ₄ = 0.04		
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained	-	- Fine grained at 2.1 m.							A G S	
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained	-									
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained										
Little to trace gravel, coarse grained - Little to trace gravel, coarse grained	3		5		G	9G1		$SO_4 = 0.03$		
- Little to trace gravel, coarse grained 4				Г				004 - 0.00	I I I I I I I I I I I I I I I I I I I	
- Little to trace gravel, coarse grained 4	-									
- Little to trace gravel, coarse grained 4	-								TED	
- Little to trace gravel, coarse grained 4			6							
6 3 870.69 25 mm PVC standpipe installed. Backfilled with auger cuttings. 870.69 Dry upon completion. Dry on May 7, 2015. 869.19 7 End of hole at 6.0 m. 869.19 CONTRACTOR: Darkhorse Drilling Ltd. GROUND ELEVATION: 876.687 NORTHING: 5808443.116 EASTING: 308766.735	4-								BAC	
6 3 870.69 25 mm PVC standpipe installed. Backfilled with auger cuttings. 870.69 Dry upon completion. Dry on May 7, 2015. 869.19 7 End of hole at 6.0 m. 869.19 CONTRACTOR: Darkhorse Drilling Ltd. GROUND ELEVATION: 876.687 NORTHING: 5808443.116 EASTING: 308766.735										
6 3 870.69 25 mm PVC standpipe installed. Backfilled with auger cuttings. 870.69 Dry upon completion. Dry on May 7, 2015. 869.19 7 End of hole at 6.0 m. 869.19 CONTRACTOR: Darkhorse Drilling Ltd. GROUND ELEVATION: 876.687 NORTHING: 5808443.116 EASTING: 308766.735									EDE	
6 3 870.69 25 mm PVC standpipe installed. Backfilled with auger cuttings. 870.69 Dry upon completion. Dry on May 7, 2015. 869.19 7 End of hole at 6.0 m. 869.19 CONTRACTOR: Darkhorse Drilling Ltd. GROUND ELEVATION: 876.687 NORTHING: 5808443.116 EASTING: 308766.735	-		4			9D2	10			
6 End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. 7 2 Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Backfilled with auger cuttings. <t< td=""><td>5-</td><td></td><td>•</td><td>Г</td><td></td><td></td><td></td><td></td><td>S</td><td></td></t<>	5-		•	Г					S	
6 End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. 7 2 Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Backfilled with auger cuttings. Dry on May 7, 2015. Backfilled with auger cuttings. Backfilled with auger cuttings. <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>										
6 End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. Dry on May 7, 2015. 7 End of hole at 6.0 m. 1 Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. 869.19 Body and the second sec										
6 End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. Dry on May 7, 2015. 7 End of hole at 6.0 m. 1 Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. 869.19 Body and the second sec	-		3							070.00
25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015. 7- LOGGED BY: AZ GROUND ELEVATION: 876.687 CONTRACTOR: Darkhorse Drilling Ltd. RIG/METHOD: Geoprobe/ Solid Stem	6-	End of hole at 6.0 m.								870.69
- Dry upon completion. Dry on May 7, 2015. 7 - Seg. 19 LOGGED BY: AZ CONTRACTOR: Darkhorse Drilling Ltd. RIG/METHOD: Geoprobe/ Solid Stem EASTING: 308766.735	-	25 mm PVC standpipe installed.								
7-		Dry upon completion.								
LOGGED BY: AZ CONTRACTOR: Darkhorse Drilling Ltd. RIG/METHOD: Geoprobe/ Solid Stem GROUND ELEVATION: 876.687 NORTHING: 5808443.116 EASTING: 308766.735		יוט טוו וווען ז, 2013.								
LOGGED BY: AZ GROUND ELEVATION: 876.687 CONTRACTOR: Darkhorse Drilling Ltd. NORTHING: 5808443.116 RIG/METHOD: Geoprobe/ Solid Stem EASTING: 308766.735	7-									
LOGGED BY: AZ GROUND ELEVATION: 876.687 CONTRACTOR: Darkhorse Drilling Ltd. NORTHING: 5808443.116 RIG/METHOD: Geoprobe/ Solid Stem EASTING: 308766.735	-									
CONTRACTOR: Darkhorse Drilling Ltd.NORTHING: 5808443.116RIG/METHOD: Geoprobe/ Solid StemEASTING: 308766.735										869.19
CONTRACTOR: Darkhorse Drilling Ltd.NORTHING: 5808443.116RIG/METHOD: Geoprobe/ Solid StemEASTING: 308766.735		LOGGED BY: AZ	<u>ı</u>				G	ROUND FI EVATION	J: 876.687	J
RIG/METHOD: Geoprobe/ Solid Stem EASTING: 308766.735										
DATE: April 30, 2015										
		DATE: April 30, 2015								
CALIBRATION: PAGE 1 of 1		CALIBRATION:							PAGE	1 of 1

CLIENT: Stantec Consulting Ltd.

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 10

PROJECT NO.: RD5288 BH LOCATION:

	SUBSURFACE PROFILE							
Depth (m)	Description	Tog Moisture (Wp X WI) 25 50 75 So - -	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)
0	GROUND SURFACE Topsoil Organic, black, moist. Sand Little silt, trace gravel, compact, fine grained, brown, damp.	<u>₽.₽</u>					A SOLID PVC PIPE	881.33 881.03
2-	Silt and Clay	11		10D1	7	SO ₄ = 0.04		879.33
-	Little sand, stiff, non plastic, brown, occasional rust staining, damp.		G	10G1		Grain Size Analysis: Sand - 17.9%		
3	Sand Little silt, loose to compact, coarse grained, brown, dry to damp.	6 6				Silt - 44.1% Clay - 38.0%	SLOTTED PVC PIPE	878.33
- 5- - - -	- Wet 5.8 m.	4		10D2	7			
6	End of hole at 6.0 m. 25 mm PVC standpipe installed. Backfilled with auger cuttings. Dry upon completion. Dry on May 7, 2015.						↓ 28 28 ↓	875.33
-								873.83
	LOGGED BY: AZ CONTRACTOR: Darkhorse Dril RIG/METHOD: Geoprobe/ Solid DATE: April 30, 2015	•	1	1	N	ROUND ELEVATION ORTHING: 5808255. ASTING: 308645.583	705	
	CALIBRATION:						PAGE	1 Of 1

CLIENT: Stantec Consulting Ltd.

SITE: Aspen Lakes West NOTES:

BOREHOLE NO.: 11

PROJECT NO.: RD5288 BH LOCATION:

	SUBSURFACE PROFILE								
Depth (m)	Description	Symbol	Moisture (Wp X WI) 25 50 75	Type	Sample No	SPT (N)	Comments	Well Completion Details	Elevation (m)
0-	GROUND SURFACE	<u>24</u>							882.77
- - - 1- -	Topsoil Organic, black, moist. Silt Little clay, little sand, firm, non plastic, brown, occasional rust staining, damp. Clay Some silt, trace sand, firm, medium plastic, brown, occasional black and		11					TED PVC PIPE	881.48
-	rust staining, moist.		21	G					880.77
2	Sand Little silt, loose, fine grained, brown, damp.		•		11G1		SO ₄ = 0.04	SOLIT BACKFILLED WITH AUGER CUTTINGS	000.77
3-			5						
-					11D1	4			
-								* HI HI	
4-									
-								CKF	
-								BA	
	- Black staining from 4.4 to 4.6 m.			G	11G2				
5-		10.100	•						
-								660 660	
-								SLOT	
6-			3						
-					11D2	9			876.27
	End of hole at 6.5 m. 25 mm PVC standpipe installed.								
7-	Backfilled with auger cuttings. Dry upon completion.								
	Dry on May 7, 2015.								
									875.27
	LOGGED BY: AZ CONTRACTOR: Darkhorse Dril RIG/METHOD: Geoprobe/ Solid			L	1	N	ROUND ELEVATION ORTHING: 5808235. ASTING: 308761.141	918	
	DATE: April 30, 2015 CALIBRATION:							PAGE	1 of 1

	NS LAND DEVELOPMENT LTD.			EN DRILLING	g ltd.					TEST HOLE NO: 1 PROJECT NO: RD2208			
	EN PROPERTY		TRUCK M										
	4 34-39-27-W5M, LACOMBE		SOLID STE					Г	II c#	ELEVATION			
L	LE TYPE TUBE	BULK	Ľ	_ough	<u>الم</u> م: 6			here	∏ Splí ∕7 nou	LL CUTTINGS	Core Sample		
DAUA					<u>.</u>								
YDepth(m)	Soi Descrip	otion	SOIL SYMBOL	PLASTIC 	M.C. 0 80	Liquid 	SAMPLE TYPE	SAMPLE NO	SPT(N)		nts/Other Data	WELL	ELEVATION(m)
- 0.0 - 1.0 - 2.0 - 3.0 - 4.0	\TOPSOIL: organics, black, r SILT: some clay trace sanc low plastic, brown, occasio inclusions, dry. SILT AND SAND: fine graine graded, some clay, comap	l, very stiff, nal coal d, poorly		20 4				101 101 102 103 102	15	SO4=0.44% GRAIN SIZE			-1.0
6.0 7.0 9.0 10.0	End of hole at 8.0m. Backfilled with cuttings. 25mm pipe installed to 4.9 Sloughed to 4.9m. Dry upon completion. Dry on Sep20,2006.			α I+d) BY: JC	X	165		CLAY=27% SILT=38% SAND=35% GRAVEL=0% NO RECOVE	RY. ETION DEPTH: 8	m	-7.0
Pa	rkland Geotech		sultin	g Ltd.		ED BY: M	DB				ETTE; 09/13/06	11	
05/10/08/	Red De	<u>er, Alberta</u>										oge 1	of 1

WATKI	NS LAND DEVELOPMENT LTD.	EVER GREEN DRILLING	LTD.			TEST HOLE NO: 2		
ļ	EN PROPERTY	TRUCK MOUNT				PROJECT NO: RD2208		
	4 34–39–27–W5M, LACOMBE COUNTY, AB	SOLID STEM AUGER				ELEVATION:		
	LE TYPE TUBE BENTONITE PEA GRAVEL	SLOUGH	Grab	اسل	∏Split F ZinRii i	Pen Core Sample	9	
D/ (OF G								(
YDepth(m)	Soil	SYMBOL		2 2	2	Comments/Other	WELL NSTALLATION	ELEVATION(m)
epth			м.с. цоло 🗗	SAMPLE	SPT(N)	•	WELI	ATIC
9	Description	<u>⊗</u>	• · · · · · · · ·	S	0,	Data	INS	ELE
- 0.0	SAND AND SILT: trace organics, fine	20 40	60 80					- 0.0
	grained, poorly graded, loose, non			- 404			88	-
-	plastic, brown, moist.			= 2G1			88	-
- 1.0 -							88	
-								-
	SILT AND CLAY: trace sand, stiff, low			= 2G2			88	-
- 2.0 -	plastic, brown, moist. SAND AND SILT: fine grained, poorly	/ (88	
-	graded, loose to compact, brown,						88	-
	occasional coal inclusions, moist.						88	-
- 3.0 -			∇	2D1	в		88	
-								
- - 4.0							80	
- *.0 -							88	
-	SILT: some sand, some clay, stiff, low						88	-
- 5.0	plastic, brown, moist.						1	-5.0
								- 0.0
-							1-1	-
- - 6.0				_				
			X	202	13		Æ	_
-							Æ	
- 7.0							H	7.0
-								
							IFI)	-
- 8.0								-8.0
-								-
-								
- 9,0		.						
	End of hole at 9.2m.							-
	Backfilled with cuttings. 25mm pipe installed to 8.0m.							
E 10.0 E	Sloughed to 8.0m.							10.0
-	Dry upon completion. Well Destroyed on Sep20,2006.							
- - 11.0				1				
	rkland Geotechnical Con		LOGGED BY: JC			COMPLETION DEPTH: 9.	2 m	
^u	Red Deer, Alberta	ourning Dru.	Reviewed by; MDB	}		COMPLETE: 09/13/06	age 1	of 1
06/10/08 0	GOSPM (PARKLAND)		!				-9-	<u> </u>

WATKI	NS LAND DEVELOPMENT LTD.		EVER GREEN	DRILLING LT).	007.0911.210			TEST HOLE NO: 3 PROJECT NO: RD2208			
	en property		TRUCK MOUN									
<u> </u>	4 34-39-27-W5M,LACOMBE CO		SOLID STEM A	AUGER			г		ELEVATION			
	LE TYPE TUBE FILL TYPE BENTONITE	BULK	SPT SLOVO		Grab GROUT]] Spl	LL CUTTINGS	Core Sampl	e	
BAUKI		PEA GRAVEL		и (GROUT		1	ZURI		SAND .		
YDepth(m)	Soil Descript	ion	SOIL SYMBOL	Astic M.C. 	LIQU 	E SAMPLE TYPE	SAMPLE NO	SPT(N)		nts/Other Data	WELL INSTALLATION	ELEVATION(m)
1.0	SILT AND SAND: little clay, tro organics, fine grained, poorly loose, non plastic, brown, mo SILT: some clay, trace sand,	graded, iist. stiff, low		H			3G1 3D1	7	GRAIN SIZE CLAY=13% SILT=32% SAND=35%			
3.0	plastic, brown, trace sulpher moist.	inlcusions,		•					GRAVEL=0% SO4=0.7%			
- 4.0 - 5.0	SILT AND SAND: little clay, co plastic, brown, coal inclusions					X	362 302	13				
	SILT: sandy, clayey, stiff, non brown, moist.	plastic,					38LK1					
- 8.0	End of hole at 8.0m.					 	3D3	17				
9,0	End of hole at 8.0m. Backfilled with cuttings. 25mm pipe installed to 8.0m Dry upon completion. Dry on Sep20,2006.											9.0
<u>- 11.0</u>	nkland Castaches	ool Com			GGED BY: J					ETION DEPTH: 8	<u>ı</u> m	-11.0
Pa	rkland Geotechni		suiting		VIEWED BY:		}			ETE: 09/13/06		
05/10/08 0	1:03PM (PARKLAND) Red Deer	<u>, Alberta</u>		(Page 1	of 1

	NS LAND DEVELOPMENT LTD.			EN DRILLI	NG LTD.				TEST HOLE NO: 4 PROJECT NO: RD2208			
	EN PROPERTY		TRUCK M									
	4 34-39-27-W5M, LACOMBE CO LE TYPE	DUNTY, AB	Isolid st Solid st	EM AUGER		 \l		<u> </u>	ELEVATIO			
	TILL TYPE BENTONITE			LOUGH	in the second	Frab ROUT			t Pen LL CUTTINGS	Core Sampl	e	
						/////					<u> </u>	
YDepth(m)	Soil		SYMBOL	2				(N)	Comme	ents/Other	ATION	ELEVATION(m)
YDept	Descript	ion	SOIL S	PLASTIC	M.C.	LIQUID	SAMPLE TYPI SAMPLE NO	SPT(N))ata	WELL INSTALLATION	LEVATI
- 0,0				20	40 60	80						- 0.0
	<u>TOPSOIL: organics, black, mo</u> SILT: some clay, trace sand,											
-	organics, stiff, non plastic, b										88	-
- - 1.0	moist.			•							88	-
							= 46	1			80	-
 -	SAND: fine grained, poorly gr											-
- 2.0	compact, brown, occassional linclusions, moist.	çoui	(HH)			<u>.</u>					88	-
-	CLAY: silty, trace sand, trace										88	-
4 - -	firm to stiff, medium plastic, occasional coal inclusions, or										88	
- 3.0	rust stains, moist.	00010110									88	
							X 40	1 12			NA	-
-								,			88	
- 4.0	SILT AND SAND: trace clay, fi							4			BB	
-	poorly graded, compact, non brown, occasional coal, moist		· (• • • • • (• • •								86	
-											88	-
5.0				•							88	; —5,0
										·	86	
-											88	-
- 6.0											88	
•							X 4D	2 13				
-											H	-
- 7.0				•							F	-
-											Æ	
-												-
- 8.0												
-												
-			(((-
- 9,0												
-	End of hole at 9.2m.										KITKE	
-	Backfilled with cuttings.											-
- 10.0	Dry upon completion. Dry on Sep20,2006.											
È	,										Ē	
												-
- 11.0												-11.0
Pa	rkland Geotechni	cal Cons	sultin	g Ltd.) by: JC Ed by: Mi)B			ETION DEPTH: 9. ETE: 09/13/06	zm	
05/10/05 0	1.03MI (PARKLAND) Red Deer	Alberta									^o oge 1	of 1

MPE EN	GINEERING LTD.	DRILLED W	ith soli	d stem au	BOREHOLE NO: 1 PROJECT NO: RD0814					
RUTTEN	SUBDIVISION		-					ELEVATION: 869.		
SE34-3	19–27–W4M, BLACKFALDS, AB						Spli		ore Sample	
SAMPLI						<u>ا</u>	·			
BACKF	LL TYPE DENTONITE PEA GRAVEL	[[]]sl	OUGH	4 10	1001		1	Lud		
Depth(m)	Soil Description	SOIL SYMBOL	PLASTIC	М.С. Ф 40 60	Liquid { 80	SAMPLE TYPE SAMPLE NO	SPT(N)	Comments/ Data	Other 🚆	INSTALLATION ELEVATION(m)
- 0.0	TOPSOIL: silty, black, damp (275mm).							Frost to 0.1 m.		-
- 1.0	SAND: fine grained, some silt, compact, light brown, rootlets to 0.8 m, dry to damp. — medium coarse to coarse, dk. brown.						5	SO4 = 0.26% Grain Size Analy Sand = 62 % Silt = 38 %	sis:	
- 4.0	SILT: some fine grained sand, little clay, trace pebbles, brown, interbedded, occ. coal, moist.									
- 6,0	— free water.			0						
7.0 8.0	End of Hole at 7.0 m. 25mm standpipe installed to 7.0m. Water at 6.1 m upon completion. Water at 6.1 m on November 22, 2002. Water at 6.1 m on December 2, 2002.									
	- milland Castachnical Ca	maulti	no I	td LOG	GED BY:			COMPLETI	on depth: 7 -; 20/11/02	
Ľ	arkland Geotechnical Co	Mann	пқ п	REV	IEWED BY	: MDB	<u></u>		., 20/11/02	Poge 1 of
09/41/6	Red Deer, Alberta	1			uu					

	ineering LTD.			ID STEM AUGER	DRO. FOT	BDREHOLE NO: 6 PROJECT NO: RD0814		
itten s	SUBDIVISION						N: 874.956 m	
34-39	-27-W4M, BLACKFALDS, AB		5 Jour	Grab	Π	Split Pen	Core Sample	
MPLE				GROUT		DRILL CUITINGS		
NCKFILI	L TYPE BENTONITE	PEA GRAVEL	SLOUGH	4. 01001	- <u>[-</u>]	<u></u>		
Depth(m)	Soil Descrip		PLASTIC I	M.C. LIQUI 40 60 80	SAMPLE TYPE SAMPLE NO	튭	ents/Other Data).02m.	WELL INSTALLATION ELEVATION(m)
- 1.0 - 2.0	 OPSOIL: silty, black, damp SAND: medium grained, little compact, light brown, rootle damp. -some silt. -trace fine sand, compact -trace fine sand, compact -trace clay. -little silt, dense. -interbedded clay laminate -coarse sand. 	e siit, ets to 0.6m, to dense, dry. es. d to 7.0m. 22, 2002.				S04 = 0	2.09%	
	arkland Geotec	1 + 1 /N		Ttd LOGGED B	Y: ART		COMPLETION DEPT	H: / m
	Contan	hnical Co	msulting-	Ltd. REVIEWED	BY: MDB	Ì	COMPLETE: 20/11	/02 Page 1 d

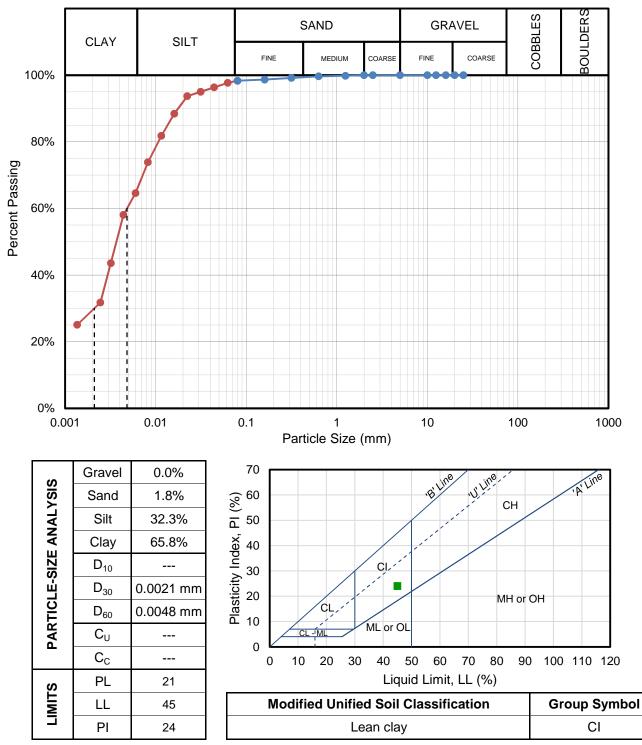
MPF FN	IGINEERING LTD.	drilled with solid stem auger						BOREHOLE NO: 11 PROJECT NO: RD0814			
	SUBDIVISION										
	39–27–W4M, BLACKFALDS, AB						<u></u>		N: 876.906 m		
SAMPL	E TYPE TUBE BULK	⊠ spr					Spli		Core Sampl	e	
BACKF	ILL TYPE gentonite 📑 Pea gravel	SLOU	GH	4 G	ROUT		E AURI	LL CUTTINGS	[]]]SANND		
Depth(m)	Soil Description	Solt SYMBOL	ASTIC 20	M.C. 40 50	Liquid 1 801	SAMPLE TYPE	SPT(N)		ents/Other Data	WELL	ELEVATION(m)
- 1.0 - 1.0 - 2.0 - 3.0 - 5.0 	TOPSOL: silt, sand, black, damp. (200mm SILT AND CLAY: some sand, firm, medium plastic, light brown, rootlets to 0.55m, dry to damp. -rootlets to 0.55m. -trace clay. CLAY: silty, stiff, low to medium plastic, brown grey, damp. -sand/silt partings. SILT: some clay, trace sand, stiff, low plastic, dry to damp. -fine sand lense. End of hole at 7.4m. 25mm standpipe installed to 6.8m.		20	40 60	80		101 15 102 14 1103 19 1104 2	5	7 % 3 % 40 %		
	No water at completion.								MPLETION DEPTI		
P	arkland Geotechnical Co Red Deer, Albert	onsultin, a	g L	td. REV	ged by: 1 Ewed by				MPLETE: 22/11,	/02	1 of 1

PARTICLE-SIZE ANALYSIS, LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY ASTM D422 & ASTM D4318

PROJECT: Aspen Lakes West

PROJECT#: RD5288

CLIENT: Stantec Consulting Ltd..


SOIL DESCRIPTION: clay, some silt, trace sand

SAMPLE DATE: May 7, 2015

TEST DATE: May 20/15

SAMPLE ID: 8D1

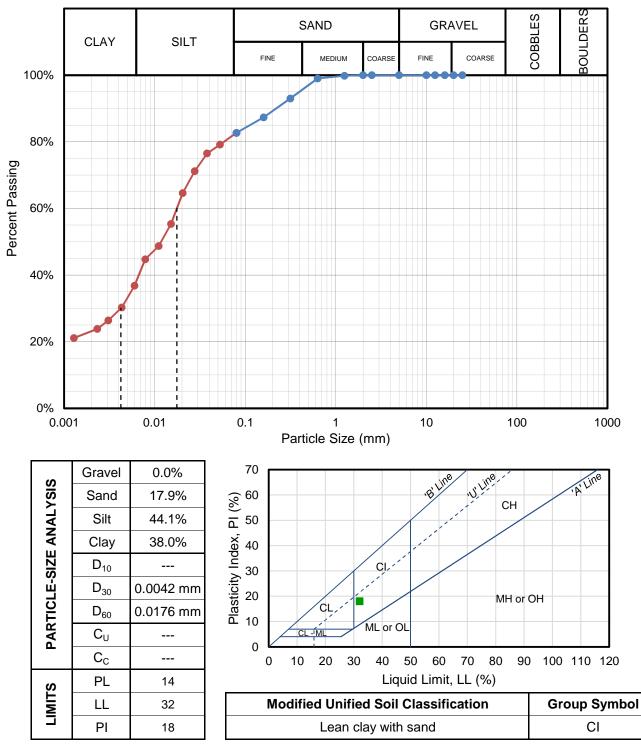
DEPTH: 3.0m

PARTICLE-SIZE ANALYSIS, LIQUID LIMIT, PLASTIC LIMIT, AND PLASTICITY ASTM D422 & ASTM D4318

PROJECT: Aspen Lakes West

PROJECT#: RD5288

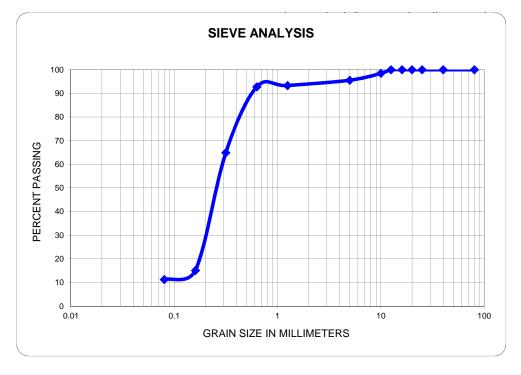
CLIENT: Stantec Consulting Ltd..


SOIL DESCRIPTION: silt, and clay, little sand

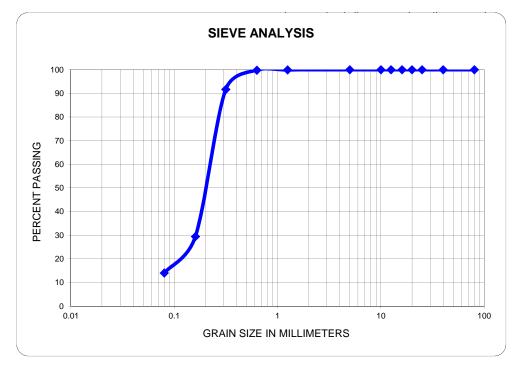
SAMPLE DATE: May 7, 2015

TEST DATE: May 20/15

SAMPLE ID: 10G1


DEPTH: 2.5m

PROJECT - Aspen Lakes West PROJECT # RD5288 DATE - May 11/15 SAMPLE SOURCE -PIT NAME -

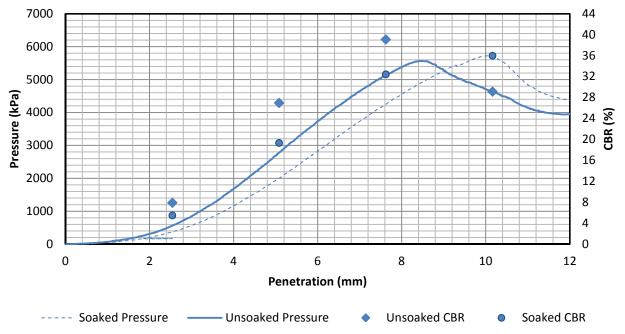

			TECHNICIAN -	AB	SIEVE #	1
SIEVE NO.	OPENING SIZE	WEIGHT	TOTAL WT.	PERCENT	SPECIF	ICATION
	(mm)	RETAINED (g)	FINER (gms)	PASSING	Min.	Max.
80000	80		520	100.0		
40000	40		520	100.0		
25000	25		520	100.0		
20000	20		520	100.0		
16000	16		520	100.0		
12500	12.5		520	100.0		
10000	10	7.7	512.3	98.5		
5000	5	15.3	497	95.6		
1250	1.25	11.6	485.4	93.3		
630	0.63	2.8	482.6	92.8		
315	0.315	145.1	337.5	64.9		
160	0.16	258.7	78.8	15.2		
80	0.08	20	58.8	11.3		
SIEVE PAN		0.5				
MOISTURE CONTER	NT SAMPLE		SIEVE ANALYSIS SA	MPLE	D.W.W.CALC	ULATIONS
A-WT. WET SAMPLE	E + PAN	1239	G-WT. OF DRY SAMPLE	520		
B-WT. DRY SAMPLE	E + PAN	1227.7	H- WASHED DRY +PAN	1169.7		
C-WT. OF WATER		11.3	I- WT OF WASHED DRY SAI	462		
D-WT. OF PAN		707.7	J- WT WASHED FINES	58		
E-WT. OF DRY SAM	PLE	520				
F-MOISTURE CONT	ENT	2.2				
DESCRIPTION OF S	SAMPLE/COMM	IENTS	METHOD OF PREPA	RATION		WASHED
BH3			TOTAL WEIGHT			519.7
3G1			DRY WT.			520
2.5m			DIFFERENCE			-0.3
			% DIFFERENCE			-0.00057692

PROJECT - Aspen Lakes West PROJECT # RD5288 DATE - May 11/15 SAMPLE SOURCE -PIT NAME -

			TECHNICIAN -	AB	SIEVE #	1
SIEVE NO.	OPENING SIZE	WEIGHT	TOTAL WT.	PERCENT	SPECIF	ICATION
	(mm)	RETAINED (g)	FINER (gms)	PASSING	Min.	Max.
80000	80		729.4	100.0		
40000	40		729.4	100.0		
25000	25		729.4	100.0		
20000	20		729.4	100.0		
16000	16		729.4	100.0		
12500	12.5		729.4	100.0		
10000	10		729.4	100.0		
5000	5		729.4	100.0		
1250	1.25	0.2	729.2	100.0		
630	0.63	1	728.2	99.8		
315	0.315	59.1	669.1	91.7		
160	0.16	454.1	215	29.5		
80	0.08	112.7	102.3	14.0		
SIEVE PAN		5.7				
MOISTURE CONTER	NT SAMPLE		SIEVE ANALYSIS SA	MPLE	D.W.W.CALC	ULATIONS
A-WT. WET SAMPLE	E + PAN	1476	G-WT. OF DRY SAMPLE	729.4		
B-WT. DRY SAMPLE	E + PAN	1433.4	H- WASHED DRY +PAN	1336.8		
C-WT. OF WATER		42.6	I- WT OF WASHED DRY SAI	632.8		
D-WT. OF PAN		704	J- WT WASHED FINES	96.6		
E-WT. OF DRY SAM	PLE	729.4				
F-MOISTURE CONT	ENT	5.8				
DESCRIPTION OF S	SAMPLE/COMM	IENTS	METHOD OF PREPA	RATION		WASHED
BH7			TOTAL WEIGHT			729.4
7G1			DRY WT.			729.4
4.1m			DIFFERENCE			0
			% DIFFERENCE			0

CALIFORNIA BEARING RATIO

ASTM D1883


PROJECT: Aspen Lakes West PROJECT#: RD5288 CLIENT: Stantec

SOIL DESCRIPTION: Silty Sand

SAMPLE ID: BH9 SAMPLE DATE: April 30, 2015 TEST DATE: May 15, 2015

PROCTOR NUMBER: P15-079 MAXIMUM DRY DENSITY: 1796 kg/m³ OPTIMUM MOISTURE CONTENT: 12.3%

		Unsoaked	Soaked
~	Wet Sample + Mold (g)	11504.6	11523.7
DENSITY	Mold (g)	7178.2	7130.3
N.	Wet Sample (g)	4326.4	4393.4
	Volume Mold (cm ³)	2128.7	2128.7
DRY	Wet Density (kg/m ³)	2032.5	2063.9
	Dry Density (kg/m ³)	1810.4	1831.6
	Sample Wet + Tare (g)	171.1	223.9
MOISTURE CONTENT	Sample Dry + Tare (g)	154.3	200.6
	Water (g)	16.8	23.3
SIC N	Tare Container (g)	17.3	16.9
ĕŭ	Dry Soil (g)	137.0	183.7
	Moisture Content (%)	12.3%	12.7%
	Relative Compaction (%)	-	102.0%
S	Relative Moisture Content (%)	0.0%	0.4%
RESULTS	Surcharge Weight (kg)	-	4.54
ESI	Initial Swell Reading (mm)	-	0.0920
	Final Swell Reading (mm)	-	0.0900
TEST	Swell (%)	-	98%
₩	CBR at 2.54 mm (%)	7.9	5.5
	CBR at 5.08 mm (%)	27.0	19.3

				\times			MOISTUR	RE DEN		ELATIONSHIP WORKSHEET
	o rela						PROJECT	Asp	en Lakes	West PROJECT # RD5288
Ρ	ark	lan			U)		CLIENT	7.00	Stantec	
	SAMP		IMDEE	<u> </u>	- 1	2	2	4	E	DATE SAMPLED 1-May-15
	Wt. Sa									
DENSITY	Wt. Sr	•		woru						CONTRACTOR N/A
N SI	Wt. Sa				1722.5	1807.6	1892.1	1875.8	1829.2	CONTRACTOR N/A
Π	Volum	•			938	938	938	938	938	
	Wet D				1836	1927	2017	2000	1950	SOURCE BH 09
בא	Dry De				1694	1748	1796	1749	1678	
	•	•	/, kg/m	3	1004	17 40	1700	1745	10/0	
	CONT		-			В	С	D	E	
			-		A					SAMPLED BY A.Z.
ц	Wt. Sa Wt. Sa	•			226.2	250.0	309.8	262.2	253.0	
	Wt. W	•	Diy + i	ale	210.0	228.4	277.7	231.4	220.1	PROCTOR # P15-079
20	Tare C		or		16.2 17.1	21.6 17.1	32.1 17.0	30.8 17.0	32.9 17.1	
	Wt. Dr				192.9	211.3	260.7	214.4	203.0	
2	Moistu	•	ntent		8.4	10.2	12.3	14.4	16.2	
			re Con	tent	0.4	10.2	12.3	14.4	10.2	
U U	MMER 1925				_					SOIL TYPE: Silty Sand
	1875 1825							``````````````````````````````````````		COMMENTS:
m3)										ROCK CORRECTION
Dry Density (kg/m ³										% Rock Retained
ž	1775									4.75 mm Sieve
ensi					, er f					19.0 mm Sieve
ă	1725									% Moisture Content
D.	1720				/					Tare wt. : Wet wt.+ Tare :
				•				$\langle \mathbf{N} \rangle$		Dry wt. + Tare :
	1675							<u> </u>		Wt. of Water :
										Moisture Content:
	1625									
		6	8		10	12	14	16	18	
					Moist	ure Conter	nt (%)			
	МАХ		DRY		JITY				OPTIN	MUM MOISTURE CONTENT (Corrected)
	МАХ		I DRY I		ΙΤΥ	1796	∂ kg/m³		OPTIN	MUM MOISTURE CONTENT (Uncorrected) 12.3 %
		т	ECHN	ICIAN	IC	.Н.	-		(CHECKED S.N-K.

Results are valid for <40 percent retained on 4.75 mm sieve, and <30 percent retained on 19 mm sieve as per ASTM D4718.

Project:Aspen Lakes WestSubject:Geotechnical Testing - Soil Sulphate Test ResultsProject #:RD5288Date:May 29, 2015

	Soil Sulphate Test Results										
Laboratory:	Parkland Geot	echnical									
Sample #: 1M2	2			Sample #: 7							
Borehole: 1				Borehole: 7							
Depth: 2.0r					2.0m						
Result (% Sulp	hate): 0.04			Result (% S	ulphat	e): 0.04					
Sample #: 2M2	2			Sample #: 8	3M2						
Borehole: 2				Borehole: 8							
Depth: 2.0r	m			Depth: 2	2.0m						
Result (% Sulp	hate): 0.04		Result (% S	ulphat	e): 0.04						
	·			· -		,					
Sample #: 3M2	2			Sample #: 9)M2						
Borehole: 3				Borehole: 9							
Depth: 2.0r					2.0m						
Result (% Sulp	hate): 0.04			Result (% S	ulphat	e): 0.04					
Sample #: 4M2	2			Sample #: 1	0M2						
Borehole: 4			Borehole: 1	-							
Depth: 2.0r				•	2.0m						
Result (% Sulp	hate): 0.04		Result (% S	ulphat	e): 0.04						
Sample #: 5M2	2		Sample #: 1	1M2							
Borehole: 5			Borehole: 1	1							
Depth: 2.0r	n		Depth: 2	2.0m							
Result (% Sulphate): 0.04 Result (% Sulphate): 0.04											
Sample #: 6M2 Sample #:											
Borehole: 6				Borehole:							
Depth: 2.0r	m			Depth:							
Result (% Sulp	hate): 0.04			Result (% Sulphate):							
REQUIF	REMENTS FOR		JBJECTED TO	SULPHAT	ΈΑΤΤ	ACK (CAN/CSA-A	231-M14)				
EXPOSURE CLASSIFICATION	DEGREE OF EXPOSURE	WATER-SOLUBLE SULPHATE(SO4) IN SOIL SAMPLE, %	SULPHATE(SO4) IN GROUND WATER SAMPLES, mg/L		Y SSIVE	MAXIMUM WATER/CEMENTING MATERIALS RATIO	PORTLAND CEMENT TO BE USED				
S-1	Very Severe	over 2.0	over 10,000	35	_	0.4	HS				
S-2	Severe	0.20 to 2.0	1 500 to 10 000) 32		0.45	HS				
S-3	Moderate	0.10 to 0.20	150 to 1 500	30		0.5	MS or HS				

Tech: AB Chkd: NN

Certificate of Analysis

AGAT WORK ORDER: 15R980125 PROJECT: RD5288

CLIENT NAME: PARKLAND GEOTECHNICAL CONSULTING

SAMPLING SITE:

CALGARY, ALBERTA CANADA T2E 7P7 TEL (403)735-2005 FAX (403)735-2771 http://www.agatlabs.com

2910 12TH STREET NE

ATTENTION TO: Nick Ng

SAMPLED BY:

Soil Analysis - Soluble Sulfate											
					DATE REPORTED: 2015-06-03						
S	AMPLE DES	CRIPTION:	MC 5-1	MC 9-3							
	SAM	PLE TYPE:	Soil	Soil							
	DATE	SAMPLED:	4/30/2015	4/30/2015							
Unit	G/S	RDL	6608872	6608873							
mg/L		2	10	7							
mg/kg		2	3	3							
% w/w		0.0002	0.0003	0.0003							
	Unit mg/L mg/kg	SAM DATE : Unit G / S mg/L mg/kg	mg/L 2 mg/kg 2	SAMPLE DESCRIPTION: MC 5-1 SAMPLE TYPE: Soil DATE SAMPLED: 4/30/2015 Unit G / S RDL 6608872 mg/L 2 10 mg/kg 2 3	SAMPLE DESCRIPTION: MC 5-1 MC 9-3 SAMPLE TYPE: Soil Soil DATE SAMPLED: 4/30/2015 4/30/2015 Unit G / S RDL 6608872 6608873 mg/L 2 10 7 mg/kg 2 3 3						

Comments: RDL - Reported Detection Limit; G / S - Guideline / Standard

Certified By:

ALBERTA TRANSPORTATION -SPECIFICATIONS FOR AGGREGATE (TABLE 3.2.3.1, DECEMBER 2010)

DESIGNATION	TION		-				2				З				4	┢	5	┢	9		7	8	6
Class (mm)	(mr	10	12.5	16	25	*16(N2)	20	25	40 1	12.5AW 12.5BW	12.5BW	12.5C	16	20	25	40	10A 1	10B	80	125	40	25	8
	125 000								╞								ŀ	╞		100			
<u> </u>	80 000																		100				
	50 000																	51	55-100 5	55-100			
	40 000								100							100					100		
<u> </u>	25 000				100			100 7	70-94						100			Ř	38-100 3	38-100		100	
	20 000				85-95		100	82-97						100		55-90							
Metric	16 000			100	75-87	100	84-94	70-94	55-85				100					e	32-85 3	32-85		90-100	
	12 500		100 8	80-92 65-80		89-100				100	100	100	72-95										
	10 000	100	83-92 7	70-84 58-72	58-72	78-94	63-86	52-79 44-74	14-74	35-65	55-75	70-93	53-82	35-77	30-77	25-72	100	100		~	85-100	45-75	
(CGSB 8-GP-	8 000																						100
2M) µm	5 000	60-75	55-70 5	50-65 40-58	40-58	55-70	40-67	35-64 3	33-62	0-15	0-15	30-60	27-54	15-55	15-55	8-55 7	70-90 4	45-70 2	20-65 2	20-65		0-15	85-100
	1250	26-45 26-45	26-45 2	26-45 25-44	25-44	26-45	20-43	20-43 18-43 17-43	17-43	0-3	0-3	9-28	9-28	0-30	0-30	0-30 2	20-45 2	20-45		1	40-100	0-5	45-75
	630	18-38	18-38 1	18-38 16-36	16-36	18-38	14-34	12-34	12-34														30-50
	315	12-30	12-30 1	12-30 10-28	10-28	12-30	9-26	8-26	8-26			0-15	0-15				9-22 9	9-22 6	6-30	6-30	17-100		18-30
	160	8-20	8-20	8-20	6-18	8-20	5-18	5-18	5-18			0-11	0-11				5-15 5	5-15					10-21
	80	4-10	4-10	4-10	4-10	4-10	2-10	2-10	2-10	0-0.3	0-0.3	0-8	0-8	0-12	0-12	0-12 (0-10 0	0-10 2	2-10	2-15	6-30		5-15
%FRACTURE BY WEIGHT (2 FACES)	Υ ALL 5000 +5000	S *	SEE NOTE (N1)	TE (N1	(+09	+09	+09	20+	75+ (100% 1 face)	75+ (100% 1 face)	+09	+09	40+	40+	25+	N/A I	N/A	N/A	N/A	N/A	N/A	N/A
PLASTICITY INDEX (PI)	DEX (PI)	ЧN	ЧN	ЧN	ЧN	ЧN	NP-6	NP-6	NP-6	N/A	N/A	NP-4	NP-4	NP-8	NP-8	NP-8	NP-6	NP-6	NP-8	NP-8	NP-5	NP-5	ЧN
L.A. ABRASION LOSS PERCENT MAX.	N LOSS MAX.	40	40	40	40	50	50	50	50	35	35	35	35	N/A	N/A	N/A	N/A I	N/A	N/A	N/A	N/A	N/A	35
FLAKINESS INDEX	INDEX		-		z	N/A	1	-		MAX 15	15						N/A	A	-			1	
COEFFICIENT OF UNIFORMITY (C _U)	чТ ОF Υ (С⊍)										N/A										3+	N/A	A
Designations:	lö:											* Notes:	:										
Designation 1 - Asphalt Concrete Pavement	1 - Asp	halt C	oncrete	e Pav	/emer	Ħ					۲. ۲	N1. According to Specification 3.50, Asphalt Concrete Pavement - EPS or	ing to	Speci	ficatio	n 3.50	, Aspł	nalt Co	oncret	e Pav	ement	- EPS	o.
Designation 2 - Base Course Aggregate	2 - Bas	e Cou	rse Ag	greg	ate							3.53, Apshalt Concrete Pavement - Superpave and Mix Type Specified.	pshalt	Conc	rete P	avem	ent - C	Superp	oave a	ind Mi	x Type	Speci	ified.
Designation 3 - Seal Coat Aggregate	3 - Sea	l Coat	Aggre	gate							N2.	Designation 2 Class 16 Material is ASBC	ation 2	Class	s 16 N	lateris	ıl is A	SBC					
Designation 4 - Gravel Surfacing Aggregate	4 - Gra	vel Su	rfacinç	j Agg	regate	¢۵.					N3.		shed a	aggreç	jates (other t	han a	ll Desi	ignatic	n 5 ar	nd Des	ignatic	6 uc
Designation 5 - Sanding Material	5 - San	ding N	lateria								_	materials, a tolerance of three percent in the amount passing the maximum size sieve will be permitted provided all oversize material	als, a ti um sizi	oleran e siev	ce of e will l	three be per	oercer mittec	ht in th A provi	ne amo	ount p. Il over	assing size m	the aterial	
Designation 6 - Gravel Fill	6 - Gra	vel Fill										passes the next larger standard sieve size.	the ne	∋xt lar	ger st	andarc	d sieve	e size.					
Designation 7 - Cement Stabilized Base Course Aggregate	7 - Cen	nent S	tabiliz€	∋d Ba	ise Cc	urse A	ggreg	ate			N4.		otherv	vise s	pecifie	id, Pit	-Run /	Åggre(gate w	vill be (definec	l as	
Designation 8 - Granular Filter Aggregate	8 - Grai	nular F	⁼ ilter A	ggre	gate							unprocessed granular material, with no specified gradation requirement, that is extracted from an aggregate deposit.	essed extract	granu ed fro	llar mé m an s	aterial	with vate d	no sp(eposit	ecified t	grada	ation re	quiren	nent,
Designation 9 - Slurry Seal Aggregate	9 - Slur	ry Sea	al Aggr	egat∈	۵.							5		5	j		5		:				

THE PARKLANDGEO CONSULTING GROUP EXPLANATION OF TERMS AND SYMBOLS

The terms and symbols used on the borehole logs to summarize the results of the field investigation and subsequent laboratory testing are described on the following two pages.

The borehole logs are a graphical representation summarizing the soil profile as determined during site specific field investigation. The materials, boundaries, and conditions have been established only at the borehole location at the time of drilling. The soil conditions shown on the borehole logs are not necessarily representative of the subsurface conditions elsewhere across the site. The transitions in soil profile usually have gradual rather than distinct unit boundaries as shown on the borehole logs.

1. **PRINCIPAL SOIL TYPE** – The major soil type by weight of material or by behaviour.

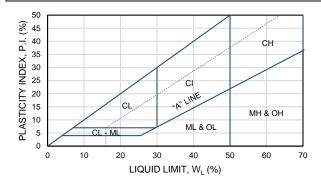
Material	Grain Size
Boulders	Larger than 300 mm
Cobbles	75 mm to 300 mm
Coarse Gravel	19 mm to 75 mm
Fine Gravel	5 mm to 19 mm
Coarse Sand	2 mm to 5 mm
Medium Sand	0.425 mm to 2 mm
Fine Sand	0.075 mm to 0.425 mm
Silt & Clay	Smaller than 0.075 mm

2. **DESCRIPTION OF MINOR SOIL TYPE** – Minor soil types are identified by weight of minor component.

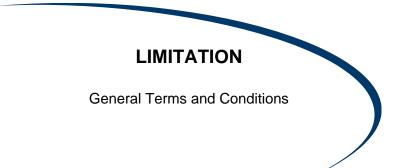
Percent	Descriptor
35 to 50	and
20 to 35	some
10 to 20	little
1 to 10	trace

3. RELATIVE STRENGTH OF COARSE GRAINED SOIL – The following terms are used relative to Standard Penetration Test (SPT), ASTM D1586, N value for blows per 300 mm.

Description	N Value
Very Loose	Less than 4
Loose	4 to 10
Compact	10 to 30
Dense	30 to 50
Very Dense	Over 50


4. CONSISTENCY OF FINE GRAINED SOILS – The following terms are used relative to undrained shear strength and Standard Penetration Test (SPT), ASTM D1586, N value for blows per 300 mm. It is noted that this correlation needs to be used with caution as the correlation is only very approximate.

Description	Undrained Shear Strength, C _u (kPa)	N Value
Very Soft	Less than 12	Less than 2
Soft	12 to 25	2 to 4
Firm	25 to 50	4 to 8
Stiff	50 to 100	8 to 15
Very Stiff	100 to 150	15 to 30
Hard	Over 150	Over 30


THE PARKLANDGEO CONSULTING GROUP EXPLANATION OF TERMS AND SYMBOLS

		MODIFIE	D UNIFIED	CLASSIF	CATION SYSTEM FOR S	OILS	
	MAJOR	DIVISION	GROUP SYMBOL	GRAPH SYMBOL	TYPICAL DESCRIPTION	LABORA	TORY CLASSIFICATION CRITERIA
	E GRAINS HEVE	CLEAN GRAVELS	GW		WELL GRADED GRAVELS, GRAVEL- SAND MIXTURE, LITTLE OR NO FINES	$C_U = \frac{D_{60}}{D_{10}}$	$- > Cc = \frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$
200 SIEVE)	/ELS COARSE (V NO. 4 SIE	(LITTLE OR NO FINES)	GP		POORLY GRADED GRAVELS, GRAVEL-SAND MIXTURES, LITTLE OR NO FINES	NOT MEET	TING ABOVE REQUIREMENTS
OILS THAN NO. 3	GRAVELS MORE THAN HALF COARSE LARGER THAN NO. 4 SIE	DIRTY GRAVELS	GM		SILTY GRAVELS, GRAVEL-SAND- SILT MIXTURES	CONTENT OF FINES	ATTERBERG LIMITS BELOW "A" LINE OR P.I. LESS THAN 4
AINED S	MORE T LAF	(WITH SOME FINES)	GC		CLAYEY GRAVELS, GRAVEL-SAND- CLAY MIXTURES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE OR P.I. LESS THAN 7
COARSE GRAINED SOILS (MORE THAN HALF BY WEIGHT LARGER THAN NO. 200 SIEVE)	RAINS EVE	CLEAN SANDS	sw		WELL GRADED SANDS, GRAVELLY SANDS WITH LITTLE OR NO FINES	$C_U = \frac{D_{60}}{D_{10}}$	$- > Cc = \frac{(D_{30})^2}{D_{10} X D_{60}} = 1 \text{ to } 3$
COAI AN HALF B	SANDS MORE THAN HALF FINE GRAINS SMALLER THAN NO. 4 SIEVE	(LITTLE OR NO FINES)	SP		POORLY GRADED SANDS, GRAVELLY SANDS, LITTLE OR NO FINES	NOT MEET	TING ABOVE REQUIREMENTS
(MORE TH	SAN E THAN HA ALLER THA	DIRTY SANDS	SM		SILTY SANDS, SAND-SILT MIXTURES	CONTENT OF FINES	ATTERBERG LIMITS BELOW "A" LINE OR P.I. LESS THAN 4
		(WITH SOME FINES)	SC		CLAYEY SANDS, SAND-CLAY MIXTURES	EXCEEDS 12%	ATTERBERG LIMITS ABOVE "A" LINE OR P.I. LESS THAN 7
E)	SILTS BELOW "A" LINE NEGLIGIBLE ORGANIC CONTENT	W∟ < 50%	ML		INORGANIC SILTS & VERY FINE SANDS, ROCK FLOUR, SILTY OR CLAYEY FINE SANDS OR CLAYEY SILTS WITH SLIGHT PLASTICITY		
). 200 SIEV	SIL BELOW NEGLI ORGANIC	W _∟ > 50%	МН		INORGANIC SILTS, MICACEOUS OR DIATOMACEOUS, FINE SANDY OR SILTY SOILS		
SOILS ASSES NC		W _∟ < 30%	CL	////	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY, OR SILTY SOILS		
RAINED WEIGHT P	CLAYS ABOVE "A" LINE NEGLIGIBLE ORGANIC CONTENT	30% < W∟ < 50%	CI		INORGANIC CLAYS OF MEDIUM PLASTICITY, GRAVELLY CLAYS, SANDY CLAYS, SILTY CLAYS		CLASSIFICATION IS BASED UPON PLASTICITY CHART (SEE BELOW)
FINE-GRAINED SOILS THAN HALF BY WEIGHT PASSES NO. 200 SIEVE)	AB NEGLI	W _∟ > 50%	СН		INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS		
(MORE THAN	ANIC FS & AYS "A" LINE	W _∟ < 50%	OL		ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW AND MEDIUM PLASTICITY		
N)	ORGANIC SILTS & CLAYS BELOW "A" LIN	W∟ > 50%	ОН		ORGANIC CLAYS OF HIGH PLASTICITY, ORGANIC SILTS		
	HIGHLY OR	GANIC SOILS	Pt	20 20 20 20 20 20 20 20	PEAT AND OTHER HIGHLY ORGANIC SOILS		OLOR OR ODOR, AND OFTEN FIBROUS TEXTURE

NOTES ON SOIL CLASSIFICATION AND DESCRIPTION:

- Soil are classified and described according to their engineering properties and behaviour.
- Boundary classification for soil with characteristics of two groups are given combined group symbols (e.g. GW-GC is a well graded gravel sand mixture with clay binder between 5 and 12%).
- Soil classification is in accordance with the Unified Soil Classification System (ASTM D2487) with the exception that an inorganic clay of medium plasticity (CI) is recognized.
- 4. The use of modifying adjectives may be employed to define the estimated percentage range by eight of minor components.

The use of this attached report is subject to the following general terms and conditions.

- STANDARD OF CARE In the performance of professional services, ParklandGEO used the degree of care and skill ordinarily exercised under similar circumstances by reputable members of its profession practicing in the same or similar localities. No other warranty expressed or implied is made in any manner.
- 2. INTERPRETATION OF THE REPORT The CLIENT recognizes that subsurface conditions will vary from those encountered at the location where borings, surveys, or explorations are made and that the data, interpretations and recommendation of ParklandGEO are based solely on the information available to him. Classification and identification of soils, rocks, geological units, contaminated materials and contaminant quantities will be based on commonly accepted practices in geotechnical or environmental consulting practice in this area. ParklandGEO will not be responsible for the interpretation by others of the information developed.
- SITE INFORMATION The CLIENT has agreed to provide all information with respect to the past, present and proposed conditions and use of the Site, whether specifically requested or not. The CLIENT acknowledged that in order for ParklandGEO to properly advise and assist the CLIENT, ParklandGEO has relied on full disclosure by the CLIENT of all matters pertinent to the Site investigation.
- COMPLETE REPORT The Report is of a summary nature and 4 is not intended to stand alone without reference to the instructions given to ParklandGEO by the CLIENT, communications between ParklandGEO and the CLIENT, and to any other reports, writings or documents prepared by ParklandGEO for the CLIENT relative to the specific Site, all of which constitute the Report. The word "Report" shall refer to any and all of the documents referred to herein. In order to properly understand the suggestions, recommendations and opinions expressed by ParklandGEO, reference must be made to the whole of the Report. ParklandGEO cannot be responsible for use of any part or portions of the report without reference to the whole report. The CLIENT has agreed that "This report has been prepared for the exclusive use of the named CLIENT. Any use which a third party makes of this report, or any reliance on or decisions to be made based on it, are the responsibility of such third parties. ParklandGEO accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report."

The CLIENT has agreed that in the event that any such report is released to a third party, the above disclaimer shall not be obliterated or altered in any manner. The CLIENT further agrees that all such reports shall be used solely for the purposes of the CLIENT and shall not be released or used by others without the prior written permission of ParklandGEO.

5. LIMITATIONS ON SCOPE OF INVESTIGATION AND WARRANTY DISCLAIMER

There is no warranty, expressed or implied, by ParklandGEO that:

- a) the investigation uncovered all potential geo-hazards, contaminants or environmental liabilities on the Site; or
- b) the Site is entirely free of all geo-hazards or contaminants as a result of any investigation or cleanup work undertaken on the Site, since it is not possible, even with exhaustive sampling, testing and analysis, to document all potential geo-hazards or contaminants on the Site.

The CLIENT acknowledged that:

- a) the investigation findings are based solely on the information generated as a result of the specific scope of the investigation authorized by the CLIENT;
- b) unless specifically stated in the agreed Scope of Work, the investigation will not, nor is it intended to assess or detect potential contaminants or environmental liabilities on the Site;
- c) any assessment regarding geological conditions on the Site is based on the interpretation of conditions determined at specific sampling locations and depths and that conditions may vary between sampling locations, hence there can be no assurance that undetected geological conditions, including soils or groundwater are not located on the Site;
- any assessment is also dependent on and limited by the accuracy of the analytical data generated by the sample analyses;
- e) any assessment is also limited by the scientific possibility of determining the presence of unsuitable geological conditions for which scientific analyses have been conducted; and
- f) the laboratory testing program and analytical parameters selected are limited to those outlined in the CLIENT's authorized scope of investigation; and
- g) there are risks associated with the discovery of hazardous materials in and upon the lands and premises which may inadvertently discovered as part of the investigation. The CLIENT acknowledges that it may have a responsibility in law to inform the owner of any affected property of the existence or suspected existence of hazardous materials and in some cases the discovery of hazardous conditions and materials will require that certain regulatory bodies be informed. The CLIENT further acknowledges that any such discovery may result in the fair market value of the lands and premises and of any other lands and premises adjacent thereto to be adversely affected in a material respect.
- 6. COST ESTIMATES Estimates of remediation or construction costs can only be based on the specific information generated and the technical limitations of the investigation authorized by the CLIENT. Accordingly, estimated costs for construction or remediation are based on the known site conditions, which can vary as new information is discovered during construction. As some construction activities are an iterative exercise, ParklandGEO shall therefore not be liable for the accuracy of any estimates of remediation or construction costs provided.
- 7. LIMITATION OF LIABILITY The CLIENT has agreed that to the fullest extent permitted by the law ParklandGEO's total liability to CLIENT for any and all injuries, claims, losses, expenses or damages whatsoever arising out of or in anyway relating to the Project is contractually limited, as outlined in ParklandGEO's standard Consulting Services Agreement. Further, the CLIENT has agreed that to the fullest extent permitted by law ParklandGEO is not liable to the CLIENT for any special, indirect or consequential damages whatsoever, regardless of cause.
- 8. INDEMNIFICATION To the fullest extent permitted by law, the CLIENT has agreed to defend, indemnify and hold ParklandGEO, its directors, officers, employees, agents and subcontractors, harmless from and against any and all claims, defence costs, including legal fees on a full indemnity basis, damages, and other liabilities arising out of or in any way related to ParklandGEO's work, reports or recommendations.